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Abstract

Almeida da Silva, Felipe; Barbosa dos Santos Guerreiro, Thiago (Ad-
visor). Optical tweezers and structured light: trapping mi-
croparticles in a dark focus. Rio de Janeiro, 2023. 88p. Disser-
tação de Mestrado – Departamento de Física, Pontifícia Universidade
Católica do Rio de Janeiro.

Optomechanics, the study of light-induced forces upon matter, has seen
tremendous advances in recent years with broad implications to all natural
sciences. Optical tweezers, for instance, are now widely used in physics,
chemistry and biology to trap nano- and micro-objects with a refractive
index greater than of its surrounding medium using typically Gaussian laser
beams. Generalizing these techniques, recent works began to explore higher-
order states of the electromagnetic field and its superpositions for optical
trapping, creating beams with customized phase, mode and amplitude. These
new degrees of freedom allows for optical potentials beyond the harmonic
approximation, enabling virtually arbitrary potential forms and even time-
dependent forces capable of inducing controlled motion on the trapped object.
Within this context of structured light beams, we can explore not only the
attractive forces between light and matter but the repulsive ones that arise
when the particle’s refractive index is smaller than that of its medium. In
this work we explore both scenarios by creating holographic beams with a
Spatial Light Modulator (SLM). Specifically, we focus on the implementation
of the dark focus beam, or optical bottle beam, where particles may find
equilibrium in a region with no incidence of light. Experimental results are
presented and compared to Lorentz-Mie numerical simulations and possible
applications of these inverted optical tweezers in optomechanics and biology
are discussed.

Keywords
Optomechanics; Optical tweezer; Structured light.
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Resumo

Almeida da Silva, Felipe; Barbosa dos Santos Guerreiro, Thiago.
Pinças ópticas e luz estruturada: aprisionando micropartí-
culas em um foco escuro. Rio de Janeiro, 2023. 88p. Dissertação
de Mestrado – Departamento de Física, Pontifícia Universidade
Católica do Rio de Janeiro.

Optomecânica, o estudo de forças induzidas pela luz sobre a matéria,
teve grandes avanços nos últimos anos com diversas implicações sobre todas
as ciências naturais. Pinças ópticas, por exemplo, são amplamente usadas na
física, química e biologia para aprisionar nano e micropartículas com índice de
refração maior do que o meio que a cerca usando, em geral, feixes Gaussianos.
Generalizando essa técnica, trabalhos recentes começaram a explorar estados
de ordem maior dos feixes eletromagnéticos e suas superposições para
aprisionamento óptico, criando feixes com fase, modo e amplitude ajustáveis.
Esses novos graus de liberdade permitem o uso de potenciais arbitrários
e até mesmo forças dependentes do tempo capazes de induzir movimento
controlado no objeto aprisionado. Nesse contexto de feixes estruturados, nós
podemos explorar não apenas as forças atrativas entre luz e matéria, mas
também as forças repulsivas que ocorrem quando o índice de refração da
partícula é menor que o do meio circundante. Neste trabalho vamos explorar
ambos cenários a partir da criação de feixes holográficos com um Modulador
Espacial de Luz (SLM). Mais especificamente, vamos focar na implementação
do feixe de foco escuro, ou feixe de garrafa, onde as partículas encontram
equilíbrio em uma região sem incidência de luz. Resultados experimentais são
apresentados e comparados com simulações numéricas baseadas na teoria de
Lorentz-Mie e possíveis aplicações dessas pinças óticas inversas são discutidas
em optomecânica e biologia.

Palavras-chave
Optomecânica; Pinça ótica; Luz estruturada.
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1
Introduction

Optical tweezers

One of the greatest scientific discoveries of all time is that light carries
momentum as first experimentally demonstrated in the early 1900s [1]. Moreover,
later experiments proved that light can transfer both linear and angular
momentum even to macroscopic objects [2], opening a new horizon to the
study of radiation pressure forces.

With the advent of laser technology in the 1960s, the study of radiation
pressure using coherent light beams became straightforward and a pioneer in
this field was the 2018 Nobel laureate Arthur Ashkin. He has demonstrated
that a focused laser beam can be used to confine dielectric micrometer particles,
first with a pair of counter-propagating beams [3] and later with a single-beam
gradient force [4, 5]. His works extended to the optical trapping of atoms [6],
which inspired future works on laser cooling [7], and the first observation of
optical levitation in air and vacuum [8] that evolved into an entire research
field called levitodynamics [9].

The confinement of dielectric particles with light became known as optical
tweezers and since then, it has found many applications in a variety of scientific
fields as biology, also pioneered by Ashkin with his works manipulating bacteria
and single cells [10, 11]. Several works have been done analyzing the physical
properties of cell membranes [12–15] that can help to create a correlation
between healthy and unhealthy cells, contributing to a better understanding of
human diseases as malaria and cancer, with a potential role in the detection
and diagnosis of human diseases [16].

Optical tweezers have also been widely used in physics as force sensors
[17–20] and to study quantum interactions between light and matter in well-
isolated systems [21–24]. The ability to control the motion of mechanical modes
through interaction with light is the main feature of the optomechanics field.
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Structured light

Beyond the intrinsic momentum, light has also other degrees of freedom
such as amplitude, phase and polarization. The ability to control these features
is a recent topic of research referred to as structured light [25]. One of the first
implemented methods to modulate the phase of an incident beam was by using
spiral phase plates [26], that despite creating helicoidal wavefronts were not
designed to divide modulated and non-modulated beams.

Holography techniques, as first established by the 1971 Nobel Prize
laureate Dennis Gabor, even before the invention of the laser [27], is a more
general way to customize the phase and amplitude of an optical mode, with
no intermediate material or specific production step. The introduction of
liquid crystal spatial light modulators (SLM) offered real-time amplitude and
phase control by computer-generated holograms. Since then, spatial degrees of
freedom have been exploited in superpositions between different optical modes
to generate two-dimensional intensity patterns in the transversal plane of an
optical beam, typically in the focal plane. Some approaches combine the phase
modulators with the independent customization of polarization enabling three
dimensional control of the electric field, known as fully-structured light fields
[28].

This work

In the last few years, huge progress has been done by combining beam
shaping with optical trapping [29], opening up novel possibilities to study the
interaction between light and matter in liquid environments or vacuum. Beyond
the standard optical tweezers, structured light beams can induce controllable
motion and create time-dependent optical potentials ruling the dynamics of
micro- and nanoparticles [28].

Rotation of these tiny objects due to the transfer of angular momentum
is also of great interest, because of its potential applications such as optically
driven micromachines or motors [29]. In addition to spin angular momentum
(SAM) carried by beams with circularly polarized light one can, for instance,
induce orbital angular momentum (OAM) with annular intensity beams [30–32]
to a birefringent particle, causing them to rotate about its own axis as well as
rotate about the trapping beam axis due to the helicoidal wavefronts of the
trapping beam [33] .

In this dissertation, we will be concerned with creating, aligning, calibrat-
ing and measuring the properties of optical tweezers with structured light in
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Chapter 1. Introduction 17

the regime of attractive and repulsive interactions.The content of this work was
arranged as steps towards the first experimental implementation of a stable
dark focus tweezer (DFT) [34], presented in Chapter 4.

We begin in Chapter 2 with a brief overview of the theory of laser beam
propagation and its transverse modes, followed by an experimental protocol
to create structured light beams with an SLM. We also introduce a formalism
to understand how the exchange of momentum between light and matter can
result in a gradient force.

In Chapter 3 we implement from scratch an optical tweezer setup that we
use throughout this entire work. We discuss protocols to align and calibrate the
optical tweezer and present some results with Gaussian and structured light
modes. We work in the attractive forces regime, where the particle finds an
equilibrium point in the brightest point of a laser beam, hence the name bright
tweezers.

Finally, in Chapter 4 we introduce the DFT. We move to a repulsive forces
regime where the particle is confined in a region with a dark focus surrounded
by light in all directions as illustrated in Fig. 1.1. We discuss the viability of
the experiment and then show the obtained results.

To conclude, in Chapter 5 we discuss possible future research directions
with structured light tweezers for both, the bright and dark tweezers.

Figure 1.1: Schematic representation of the Gaussian and dark
focus tweezer.
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2
An overview of structured light

The first step towards a structured light tweezer is understanding the
physics behind laser beam propagation and its transverse modes, originating
from the laws of electromagnetism. In this chapter, we present the wave
propagation formalism in the paraxial (weak focusing) approximation and
explain how it gives rise to the Hermite-Gauss (HG) and Laguerre-Gauss
(LG) modes. We also describe the apparatus used to experimentally generate
these modes and their linear combinations in the laboratory, the spatial light
modulator. Finally, in the last section we introduce the optical forces arising
from the exchange of momentum between light and particles that will be used
throughout this thesis.

2.1
Paraxial waves

The easiest way of thinking about light is by considering a bundle of thin
arrows propagating linearly in the same direction in free space. This is the
principal idea behind geometric optics. As we discover that light propagates
according to a wave equation this heuristic idea falls apart and we need to
consider the transverse profiles of a light beam. Consider the well-known wave
equation for a fixed polarization vector,

∇2u − 1
c2
∂2u

∂t2
= 0, (2-1)

where c = c0/nm represents the speed of light in a certain medium with
refractive index nm, c0 is the speed of light in vacuum and u specifies the
electric field profile according to E⃗ = uϵ̂ for a given polarization vector ϵ̂. We
will refer to the solutions of this equation, u = u(r⃗, t), as wavefunctions.

We assume the wavefunctions have a harmonic time dependence, i.e.,
they oscillate with a well-defined frequency ω, hence the name monochromatic
light. It is convenient to represent the wavefunction u in terms of a generic
complex function U = U(r⃗, t) = R(r⃗)eiωt where R(r⃗) is the complex amplitude
of the wave. Note that u = Re{U} = 1

2(U + U †) and we can always work with
complex functions instead of their real counterparts, and take the real part
whenever necessary. Substituting U(r⃗, t) into the wave equation leads us to the
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Chapter 2. An overview of structured light 19

Helmholtz equation,
∇2U(r⃗, t) + k2U(r⃗, t) = 0, (2-2)

where we have defined the wavenumber k = ω/c = 2π/λ. Note that the
wavenumber depends on the medium in which the wave is traveling and from
now on we write km = nmω/c0.

We would now like to find out which restrictions are imposed by the wave
equation, Eq. (2-2), upon the electric field’s spatial distribution. Consider the
ansatz,

R(r⃗) = A(r⃗)e−ikz. (2-3)
A theoretical idealization of electromagnetic waves are the plane waves, for
which A(r⃗) = A0e

ikxx+ikyy. We can think of plane waves as infinite, constant
wavefronts defined by the constant-phase plane ϕ = k⃗ · r⃗. This idealization,
despite being very convenient, does not exist in nature.

Although laser beams can have similarities to plane waves, their intensity
profile varies in the radial direction as they propagate through space. Impor-
tantly, the energy distribution in the beam is not uniform unlike in plane waves.
These differences between plane waves and what we will call paraxial waves
is codified in the amplitude profile function A(r⃗), for which we now derive an
equation. Substituting Eq. (2-3) into Eq. (2-2) leads to [35],

∂2A(r⃗)
∂x2 + ∂2A(r⃗)

∂y2 + ∂2A(r⃗)
∂z2 − 2ik∂A(r⃗)

∂z
= 0. (2-4)

We assume A(r⃗) varies slowly along the beam propagation, which means
that for a small distance ∆A(r⃗) = ∂A(r⃗)

∂z
∆z where ∆z = λ. We can write it as:

∂A(r⃗)
∂z

λ ≪ A(r⃗) (2-5)
and its derivative with respect to the z-direction can be used to simplify Eq.
(2-4),

∂2A(r⃗)
∂z2 ≪ k

∂A(r⃗)
∂z

, (2-6)
to find the so-called paraxial Helmholtz equation for weak focusing beams,

∇2
TA(r⃗) − 2ik∂A(r⃗)

∂z
= 0, (2-7)

where ∇2
T = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplace operator.
From now on, we will refer to A(r⃗) as simply the electric field at a given

polarization, E(r⃗). We will also be interested in the optical intensity of a
laser beam, given by I(r⃗) = nmϵ0c

2 |E(r⃗)|2. As we will soon see, we are capable
of experimentally generating arbitrary wavefunction profiles by superposing
solutions of the paraxial Helmholtz equation.
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2.2
The Gaussian beam

The simplest solution of the paraxial wave equation, and one of the most
common in optical applications, is the Gaussian Beam. The corresponding
wavefunction reads,

EGauss(ρ, z) = E0
ω0

ω(z) exp
[

−ρ2

ω(z)2

]
exp

[
ikmz + ikm

ρ2

2R(z) − iζ(z)
]
, (2-8)

where R(z), ζ(z), ωR and ω(z) are called wavefront radius, Gouy phase shift,
Rayleigh length and beam width, respectively. These are given by,

R(z) = z

(
1 + z2

R

z2

)
, (2-9a)

ζ(z) = arctan
(
z

zR

)
, (2-9b)

ω(z) = ω0

√
1 + z2

z2
R

, (2-9c)

zR = πω2
0

λm

. (2-9d)

Figure 2.1 shows a representation of the Gaussian beam, with special
emphasis on the beam width ω(z). The width has a minimum value, namely the
beam waist ω0, right at the origin of our coordinate system. The Rayleigh length
zR defines the range over which the transverse extent of the beam remains
approximately constant, also known as depth of the focus, painted blue in Fig.
2.1. For z ≫ zR, the beam width can be approximated as ω(z) ≈ λm

πω0
z and its

linear coefficient is called numerical aperture (NA),

NA = λm

πω0
. (2-10)

The optical intensity of a monochromatic Gaussian beam is given by,

IGauss(ρ, z) = I0
ω2

0
ω(z)2 exp

[
− 2ρ2

ω(z)2

]
, (2-11)

where we define I0 = nmϵ0c
2 |E0|2 The Gaussian intensity distribution can be

seen in Fig. 2.2a). The intensity is maximum at the central point at a beam
waist distance from the origin r = ω0 decreases by a factor of 1/e2.
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zR

ω0 θ

Figure 2.1: Schematic representation of Gaussian beam propa-
gation.

2.3
Higher-order modes

2.3.1
Laguerre-Gauss modes

Laguerre–Gaussian (LG) modes are a set of solutions to the paraxial
wave equation in cylindrical coordinates, and are the main modes of the
electromagnetic field studied in this work. Their nomalized transverse profiles
present rotational symmetry along the axial direction and are defined as,

ELG
p,ℓ (ρ, ϕ, z) =E0

ω0

ω(z) exp
[
− ρ2

ω(z)2

]
exp

[
ikmz + ikm

ρ2

2R(z) − iζ(z)
]

(√
2 ρ

ω(z)

)|ℓ|

L|ℓ|
p

(
2ρ2

ω(z)2

)
exp [−i(2p+ ℓ)ζ(z)] exp [iℓϕ] ,

(2-12)

where L|ℓ|
p are the associated Laguerre polynomials, indexed by a non-negative

integer p and an azimuthal integer l. The first Laguerre polynomials are,

Ll
0(x) =1, (2-13a)

Ll
1(x) = − x+ ℓ+ 1, (2-13b)

Ll
2(x) =x

2

2 − (ℓ+ 2)x+ (ℓ+ 1)(ℓ+ 2)
2 , (2-13c)

Ll
3(x) =−x3

6 + (ℓ+ 3)x2

2 − (ℓ+ 2)(ℓ+ 3)x
2 + (ℓ+ 1)(ℓ+ 2)(ℓ+ 3)

6 . (2-13d)
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An interesting property of the LG modes is their intrinsic rotational orbital
angular momentum (OAM) of ℓℏ per photon associated with the phase term
exp(iℓϕ). For ℓ ̸= 0, the electric field presents an inclined wavefront in the
axial direction [29, 36], which can be absorbed by objects placed along the
propagation axis and hence experiencing a torque. A rotating trapped particle,
for instance, can find applications in driven motors and biology experiments and
will be discussed in the Chapter 3. Note that this orbital angular momentum is
different from the angular momentum acquired due light’s polarization, referred
to as spin angular momentum (SAM) [37]. A beam of circularly polarized light
carries a value of ±ℏ per photon where the sign depends on its handedness.

The optical intensity of LG modes is,

ILG
p,ℓ (ρ, ϕ, z) =I0

ω2
0

ω(z)2 exp
[
− ρ2

ω(z)2

](
2ρ2

ω(z)2

)|ℓ| [
Lℓ

p

(
2ρ2

ω(z)2

)]2

, (2-14)

and are plotted at the focal plane in Fig. 2.2, for different indices p, ℓ.
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a) b)

  
p=

0

d) e)

p=
1 

l=0 l=1 l=2
c)

f)

g) h)

p=
2

i)

Figure 2.2: Intensity profiles of Laguerre-Gaussian modes at
the focal plane for various indices p, ℓ.

2.3.2
Hermite-Gauss modes

Hermite-Gauss modes are another set of solutions of the paraxial wave
equation in Cartesian coordinates. The associated wavefunctions are,

EHG
m,n(x, y, z) =E0

ω0

ω(z) exp
[
−(x2 + y2)

ω(z)2

]
exp

[
ikmz + ikm

(x2 + y2)
2R(z) − iζ(z)

]

Hm

(√
2 x

ω(z)

)
Hn

(√
2 y

ω(z)

)
exp[−i(m+ n)ζ(z)],

(2-15)

where Hm and Hn are the Hermite polynomials associated to the non-negative
indices m and n determining the shape of the beam profile in the x and y

directions, respectively. The first Hermite polynomials are,

H0(x) =1, (2-16a)
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H1(x) =x, (2-16b)
H2(x) =x2 − 1, (2-16c)
H3(x) =x3 − 3x. (2-16d)

The optical intensity of a HG mode is,

IHG
m,n(x, y, z) =I0

ω2
0

ω(z)2 exp
[
− ρ2

ω(z)2

]
Hm

(√
2 x

ω(z)

)2

Hn

(√
2 y

ω(z)

)2

, (2-17)

and the are plotted in the focal plane in Fig. 2.3 for different indices. We
adopted ρ2 = x2 + y2 for simplicity.

a)

g)

b)

  

n=
0

n=
2

m=0 m=1 m=2

d)

n=
1 

c)

e) f)

h) i)

Figure 2.3: Hermite-Gaussian modes.

2.4
Superpositions

Both the LG and HG sets of modes form a complete orthogonal basis of
solutions for Eq. (2-7). Thus, any transverse light field profile can be written
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as a linear combinations of elements of these basis. These superpositions will
vary along the axial propagation direction, according to the phase evolutions
of each of the individual modes [38].

In this section we briefly present an example of a specially engineered
superposition that can be used in novel forms of optical trapping. In particular,
we present the superposition used in the dark focus trapping experiment, as
further discussed in Chapter 4, the Optical Bottle Beam.

2.4.1
The Optical Bottle Beam (OBB)

The Optical Bottle Beam (OBB) is an example of superposition of two
Laguerre-Gauss modes as first introduced by A. Arlt and M. Padgett [39].
Combining a Gaussian LG0,0 and LGp,0 modes with p = 1 or p = 2 with
a relative phase of π results in an optical beam with a dark central focus
surrounded by a bright region in all directions, as a one can see in Fig. 2.4a)
for an OBB with p = 1 and Fig. 2.4b) for p = 2.

a) b)

Figure 2.4: Intensity landscape in the xz plane of the optical
bottle beam for a) p = 1 and b) p = 2

The resulting electric field and the corresponding intensity for the OBB
are,

EOBB,p(ρ, z) =E0
ω0

ω(z) exp
[
− ρ2

ω(z)2

]
exp

[
ikmz + ikm

ρ2

2R(z) − iζ(z)
]

[
1 − L0

p

(
2ρ2

ω(z)2

)
e−i(2p+l)ζ(z)

]
,

(2-18)

IOBB,p(ρ, z) = I0
ω2

0
ω(z)2 exp

[
− 2ρ2

ω(z)2

]
[
1 −2 cos

(
2p arctan z

zR

)
L0

p

(
2ρ2

ω(z)2

)
+ L0

p

(
2ρ2

ω(z)2

)2 ]
.

(2-19)
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The Gouy phase ζ(z) defines interference patterns in the intensity distribution
of the resulting mode in Eq. (2-19). Figure 2.5 illustrates the dark region in the
x and z-direction for p = 1 and p = 2. We define the width W and height W of
the OBB as the distance between peaks of light intensity in the radial and axial
directions, respectively. Direct calculation shows that these are given in terms
of the beam waist as W = 2ω0, H = 2zR for p = 1 and W = 2

√
2 −

√
2ω0,

H =
√

2zR for p = 2. Both plots in Fig. 2.4 consider a beam with numerical
aperture NA= 0.6 propagating in the vacuum, nm = 1.0.

a) b)

Figure 2.5: Intensity profiles of the optical bottle beam for a)
p = 1 and b) p = 2.

2.5
Experimental holographic beams

There are a variety of different techniques to produce higher modes of
the electric field, such as spiral phase plates [26], metamaterials, digital mirror
devices (DMD) and spatial light modulators [28,29,40]. In this work, we create
HG and LG modes using a SLM (Pluto-NIR-015), an electronic device based on
a nematic liquid crystal display able to induce phase modulation in an incident
Gaussian beam. In this section we present a tutorial for aligning and calibrating
the SLM, but first a small digression is made necessary, in order to understand
certain practical laboratory notions such as collimated beams, thin lenses and
telescopes.

2.5.1
Collimated beams

As discussed in the previous sections, plane waves are not solutions of
the paraxial equation and provide only an approximation in certain situations.
However, geometric optics concepts are very useful in the laboratory. Consider,
for instance, light propagating as a bundle of rays whose divergence angle θ
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can be so small such that sin θ ≈ θ. These are collimated light beams. Consider
the thin lens equation,

1
f

= 1
h

+ 1
h′ , (2-20)

where f is the lens’ focal distance and h, h′ are the object’s distance and image’s
distance from the lens, respectively. For an object placed exactly at the lens’
focal distance, its image forms at infinity, meaning the light rays are parallel. In
our experiments, we collimate laser beams by focusing at a very distant point,
typically on the order of a few meters. We obtain a good approximation of a
collimated beam by this procedure.

Figure 2.6a) illustrates this idea for a beam waist ω0 at the focal distance
f1 of a thin lens. The output beam is collimated and its size can be calculated
according to the divergence angle θ1. Moreover, it can be extended to Gaussian
parameters by considering the numerical aperture, Eq. (2-10),

ωc = f1 tan θ1 = f1λ

πω0
. (2-21)

The output beam is then focused by a second lens at a distance f2.
Repeating the same calculation we find a relation between the image and the
initial waist with magnification M = f2/f1,

ωo = f2 tan θ2 = f2λ

πωc

= f2

f1
ω0. (2-22)

ω0’

f2

a) b)

 θ1

ω0
ωc

ωc’ωc

 θ2

f1 f2
f1

Figure 2.6: Geometric approximations in the laboratory. a)
Transformation of beam waist by a pair of lenses. b) Magnifi-
cation of a collimated laser beam.

Figure 2.6b) describes a telescope. An initially collimated beam is sent
through a pair of lenses that are placed at a distance given by the sum of their
focal lengths, f1 + f2. The output beam is increased (decreased) according to
the values of f1 and f2,

ω′
c = f2

f1
ωc. (2-23)

From now on, these considerations concerning laser beams with small
divergence angles, as well as collimated beams, will be used frequently
throughout the next sections. A more detailed description of rays propagation
in free space and their transformation by optical elements can be calculated
using the ABCD matrix formalism [41].
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2.5.2
Spatial light modulator

The SLM employed in this work consists in an electronic display made of
1920 × 1080 pixels. Each pixel is an individually controllable cell made of liquid
crystal. Liquid crystals are materials formed by a large number of randomly
distributed rod-like molecules orientated along a fixed direction, a configuration
known as the nematic phase The orientation of the molecules can be changed
and reorganized by the application of an external electric field [42]. This induces
a programmable birefringence in each pixel, enabling a spatial-dependent phase
modulation of an impinging light field [43].

To formulate a mathematical model for the transformation t(x, y) applied
by the SLM, consider an incident optical mode u0 = A0 exp(iϕ0), with
A0 = A0(x, y) and ϕ0 = ϕ0(x, y) being the amplitude and phase of an
incoming optical mode, respectively. A modulated beam u1 = A1 exp(iϕ1) with
A1 = A1(x, y) and ϕ1 = ϕ1(x, y) is obtained by applying the transformation
t(x, y) such that [44],

t(x, y) = A1

A0
exp

i (ϕ1 − ϕ0)︸ ︷︷ ︸
=Pph(x,y)

 , (2-24)

where we defined Pph(x, y), the phase distribution applied to the incoming
beam. As the SLM efficiency is never perfect, we add a diffraction grating
pattern Pdg to divide modulated and non-modulated modes,

Pdg(x, y) = 2π
λ

(x sinα + y sin β), (2-25)
where α and β are the diffraction angles in xz and yz planes, respectively.
Increasing the distance between diffracted beams avoids unwanted interference
ensuring a good-quality mode. The resulting complete SLM transformation is
then,

t(x, y) = A1

A0
exp (i(Pph + Pdg)) . (2-26)

This transformation is set by using a LabVIEW script, whose graphic interface
is shown in Fig. 2.7a). It allows us to configure the output radius, phase and
mode of a horizontally polarized beam. The script calculates the phase pattern
associated with Eq. (2-26) for the desired mode. Fig. 2.7b) shows an example of
the calculated pattern LG0,1 in the absence of grating (Pdg = 0) and Fig. 2.7c)
with grating for optimized operation. Both patterns were artificially colorized
for better visualization
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a) b)

c)

Figure 2.7: Labview script for beam modulation. a) SLM
controller interface. b-c) Example of the calculated pattern
displayed in the SLM screen. LG0,1 phasing pattern is produced
with b) no grating and c) grating pattern enabled.

2.5.3
Calibrating the SLM

The proper operation of the LabVIEW script relies on a fine calibration
procedure. A horizontally polarized Gaussian Beam impinges in the center of
the SLM’s screen with a small incidence angle θinc, as close as possible to the
normal, θinc ≤ π/18. The reflected beam u1(x, y) is then forwarded to a pair
of lenses f1 and f2 in order to create a setup similar to a 4f imaging system
[35] assuming f1 ≠ f2. Hence, in addition to a magnification factor, the optical
mode at a distance 2f1 + 2f2 reads:

u3(x, y) ∝ u1

(
−f1

f2
x,−f1

f2
y

)
, (2-27)

where u3(x, y) is the resulting mode we shall analyze. In this work we use
f1 = 20 cm and f2 = 25 cm creating a telescope with a magnification of 1.25.
Fig. 2.8 illustrates the setup

As stated in the last subsection, the SLM is not 100% efficient. In the
absence of a diffraction grating, the output beam is a mixture of a Gaussian
beam and the required mode, both propagating in the same direction. By
turning on the grating control, the zero-order of propagation is a Gaussian
mode and the first order is the produced beam, whose deviation angle α and
β, defined in Eq. (2-26), can be empirically adjusted in xz and yz planes,
respectively. Calibrating these parameters is key to obtaining a well-defined
mode. Wavefronts tend to interfere with other modes if a small deviation angle
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x

y

m=-1 m=0 

m=1m=2

f1 f1

f2
f2

Fourier Plane

SLM

Figure 2.8: Schematic representation of the SLM’s transforma-
tion

is chosen. Nevertheless, a high deviation angle creates a huge separation from
the reflected and previously aligned Gaussian beam. Once the modulated beam
was selected, an iris should be aligned at a distance 2f1 to create a spatial
filter preventing unwanted interference between the modes. Finally, a blazing
diffraction angle can be configured to improve the fraction of the total power
that is transmitted for a specific order of propagation

2.5.4
Visualizing patterns

A CCD camera is positioned at a distance of 2f1+2f2 to inspect the beam’s
transverse profile, |u3(x, y)|2. Its quality is based on its expected distribution
and symmetry. From now on all the calculated modes are artificially painted
using the colormap “coolwarm” (predominantly light-blue, red) and all the
experimental mode are shown in the scale “viridis” (predominantly blue, green
and yellow).

In addition to being able to visualize the beam profile, we also want to
know the properties of the modulated beam such as its beam waist ω0. To
precisely know such parameters, it is essential to calibrate the pixels of the
employed CCD camera in physical unties.

The calibration process consists of sending a laser beam to the CCD
camera fixed at a translational stage with micrometer precision. We shift the
position of the camera and save the respective image. The RGB levels associated
with the colorful image are mapped in grayscale to obtain all the information
and noise of each pixel in a single vector for each direction. We then fit a
Gaussian distribution to the vector corresponding to each direction and save
the mean value found in the curve fit. Fig. 2.9 shows this procedure for a certain
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frame of a Gaussian beam.
a) b)

c)

Figure 2.9: Curve fit for Gaussian beam. a) Experimental
Gaussian beam. b-c) Curve fitting of b) x and c) y directions.

We then repeat this process for a few different positions and find a linear
curve whose angular coefficient defines the conversion factor between pixels
and our physical unit, say µm. We use two different cameras through this work,
which we name CCD 01 (Image camera) and CCD 02 (Mode Monitor). We
first calibrated CCD 02 starting from different positions in the propagation
direction to be sure the value found was not affected by misalignment between
the camera and the laser beam. The lines show the same conversion factor of
aCCD02 = (1.99±0.01)µm/px for both experiments in which the initial position
of the camera was shifted by 30 cm. CCD 01 is also characterized by the same
procedure but shifting the magnified image of a trapped particle instead of a
Gaussian beam’s image. We found a factor ax,CCD01 = 2.83µm/px and and
ay,CCD02 = 2.80µm/px, as shown in Fig. 2.10. These calibrations will be used
in Chapters 3 and 4.

2.80μm/px
2.83μm/px

a) b)

Figure 2.10: Pixel calibration for a) aCCD02 and b) aCCD01

With the camera properly calibrated, it is possible to evaluate the
parameters of the beam. For example, Fig 2.9b-c) shows the beam waist
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a) b)θ = π/2 θ =2π/3 θ = 5π/6 θ = π θ = 7π/6 θ = 4π/3 θ = 3π/2c) d) e) f) g)

Figure 2.11: OBB experimental frames with p = 1.

a) b)θ = π/2 θ =2π/3 θ = 5π/6 θ = π θ = 7π/6 θ = 4π/3 θ = 3π/2c) d) e) f) g)

Figure 2.12: OBB experimental frames with p = 2.

ω0 fitted in pixels, which can now be converted to ω0,x = (180.1 ± 1.0)µm and
ω0,y = (204.8 ± 1.0)µm. The modulated beam presents an asymmetry in both
axes, with an aspect ratio of about 1.14. We now extend this procedure to
calculate the beam profile of the OBB in its original focal point.

Fig. 2.11 and Fig. 2.12 show profiles of the experimental OBB produced
using LG modes with p = 1 and p = 2, respectively. To simulate a beam
translation in the axial direction, we vary the relative phase θ between the
modes to mimic the intensity distribution near the focal plane. Fig. 2.13 shows
the one dimensional intensity distribution in the dark focus plane (Fig.2.11d)
and Fig. 2.12d)) for OBB with p = 1 in Fig. 2.11a) and p = 2 in Fig. 2.11b).
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a)

b)

Figure 2.13: Intensity distribution in the dark focus plane for
a) the OBB produced with and LG mode with p = 1 and b)
p = 2.

2.6
A bridge to optomechanics

Armed with the theory of laser beam propagation, we can finally move
towards optomechanics. From a semi-classical point of view, a light beam with
power P carries N = P/(pc) photons per second with momentum p = ℏkû

where û is a unit vector indicating the beam propagation direction. In the
absence of absorption, i.e., considering photons are elastically scattered by
an object, the absolute magnitude of their momentum remains the same,
by its direction can be changed. This results in a recoil force acting on the
object. Suppose, for instance, an optical ray impinges with normal incidence
on a particle and it its completely reflected backwards. Its total exchange of
momentum per second is −2Np and hence, the recoil force applied on the
particle is Fref = 2P/c û. In this section we explore the exchange of light’s
momentum with dielectric nanoparticles and discuss the conditions under which
these optical forces can confine particles.

2.6.1
Geometric optics approximation to optical forces

To generalize the normal incidence case, suppose a light beam r0 with
power P hits a dielectric sphere of radius R at an angle of incidence θ. Assume
R is much greater than the wavelength of the light λ, i.e., R ≫ 10λ.
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As illustrated in Fig. 2.14, part of the incident power is reflected, PR,
and the remaining power is transmitted, PT , where R and T are the Fresnel
reflection and transmission coefficients of the surface at angle θ [45]. We choose
a material such that most of the beam is transmitted inside the sphere, rt,0,
acquiring a new angle of propagation according to Snell’s law. The ray rt,0

travels inside the object until it reaches the opposite boundary. At this point,
most of the beam is transmitted again acquiring an angle α of propagation
with relation to the incident beam. The reflected beam keeps traveling inside
the sphere repeating the process until all light escapes from the sphere.

 θ
P

PT²R

PT²R² PT² O

x

z

PR 

 θt

i

 θi

0r t,0r

r,1r

t,1r

r,2r

t,2r

t,3r
r,3r

Figure 2.14: Geometry for evaluating the total forces acting
on the sphere due a single incident ray.

The total force acting on the sphere due to this ray is [46]:

Fray = niP

c
r̂0 − niRP

c
r̂r,0 −

∞∑
n=0

niPT
2Rn

c
r̂t,n, (2-28)

where r̂0, r̂r,0 and r̂t,n are the unit vectors representing the direction of rr, rr,0

and rt,n, respectively. PT 2Rn is transmitted power at each internal reflection
n. All terms are proportional to the refractive index of the medium ni and it is
written in order to state clearly that the momentum of the light beam inside
the sphere does not matter for the total force calculation [46]. Although there
are discussions on the definition of a photon’s momentum inside a material
– known as the Abraham–Minkowski dilemma [47] – we only measure the
momentum difference between incident and outgoing photons, evaluated in the
same medium.

The first two terms in Eq. (2-28) refer to the force applied in the particle
due to the momentum exchange from the light beam. This pushes the particle
on the direction of the beam propagation, and is thus called the scattering
force, Fscatt. The third term results in multiple transmissions. As |T | < 1, the
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first terms in the summation are higher than the remaining ones, implying a
stronger force in the −rt,1 and −rt,2 directions, pushing the particle in Fig.
2.14 upwards.

We can extend these ideas to a generic pair of converging rays, say a and
b, as illustrated in Fig.2.15. Let us ignore, for simplicity, the effects of surface
reflection, say cosidering a perfectly transparent object. In that case, forces
Fa and Fb are only due to refraction and point in the direction of momentum
change. Fig. 2.15 shows a restoring force pulling the particle toward the focal
point of the beam, assumed as the origin O in the figure.

x

z

a b

FaFb

F

f Fa Fb

F Fb

Fa
F

a b a b

O

O O

Figure 2.15: Qualitative view of the interaction between
focused light and a dielectric sphere.

Note that, according to the definition given in Section 2.1, intensity is
stronger in the focal point, due to the minimum size of the beam (for Gaussian
beams this is the waist). The particle is then attracted to the maximum point
of intensity of the laser beam [5].

This discussion provides us with a qualitative understanding of optical
forces, but strictly speaking it is valid only in the geometric optics regime,
when R ≫ λ. To go beyond that, we need to consider the dipole regime, when
the beam wavelength is much larger than the particle’s radius.

2.6.2
Dipole regime

When a dielectric particle with radius R ≪ λ/10 is placed in an electric
field, positive and negative charges q are rearranged in an induced dipole,
p = qdû, where we suppose it can be approximated by two point charges of
mass m separated by distance d and û is a unit vector with its orientation.
The equations of motion governing this situation are,

m

2
d2r+

dt2
= +qRe

{
E(r+, t) + dr+

dt
× B(r+, t)

}
,

m

2
d2r−

dt2
= −qRe

{
E(r−, t) + dr−

dt
× B(r−, t)

}
,

(2-29)
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where we have defined r+ and r− as the position vectors of positive and negative
charges, respectively. As usual, the electric and magnetic fields are E and B,
respectively.

Summing both equations enables us to find the equation of motion for
the center of mass coordinate rd = r++r−

2 . As the particle is much smaller than
the wavelength, we can expand both fields in Taylor series up to first order,
obtaining [45,48],

E(r±, t) ≈ E(rd, t) + ((r± − rd) · ∇)E(rd, t),
B(r±, t) ≈ B(rd, t) + ((r± − rd) · ∇)B(rd, t).

By substituting these expressions in the equation of motion for the center of
mass, we find

m
d2rd

dt2
= (p · ∇)E(rd, t) + dp

dt
× B(rd, t) + drd

dt
× (p · ∇)B(rd, t). (2-30)

For non-relativistic dipoles, the third term can be neglected. We average the
resulting equation to neglect terms oscillating much faster than the dipole’s
natural frequency. Under these approximations, the equation of motion for a
dielectric particle subject to optical forces becomes,

m
d2rd

dt2
= Re{α}

4 ∇|Ei(rd)|2 + k0 Im{α}
2ϵ0c

Re
{

E × B

µ0

}
− ck0 Im{α}

4ϵ0
∇ × sd

(2-31)
where we have introduced the real and imaginary polarizability of the particle,
α, also known in the static limit as the Clausius-Mossotti relation, αCM =
4πϵ0R

3(n2
R−1)/(n2

R+2) [49]. The polarizability appears here as a proportionality
constant to the electric field, p = αE, and it acquires a correction due to the
dipole’s response to the oscillating field. This is known as the radiative reaction
correction [46], and it reads,

α ≈ αCM

{
1 − i

k3
0αCM

6πϵ0

}−1

. (2-32)

We have also introduced the time-averaged spin density of the incoming
wave, sd. This component is associated with the angular momentum of light
due to polarization gradients, SAM,

sd = i
ϵ0

2ωE × E†. (2-33)

As we are concerned only with linear polarized beams, the spin-curl force will
not be further discussed.

Finally, it is possible to associate the first two terms in Eq. (2-31) with the
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gradient and scattering forces, respectively. The first term is proportional to the
optical intensity gradient of a laser beam and the second term is proportional
to the Poynting vector, that by definition points in the propagation direction
of an the electromagnetic wave. We define the particle-medium refractive index
ratio m = np/nm, which plays a major role in the next chapters as it determines
the sign of the gradiend and scattering optical forces.

The final expressions for the scattering and gradient forces are,

Fscat(r) = ẑ
128π5R6

3cλ4

(
m2 − 1
m2 + 2

)2

n5
mI(r), (2-34)

Fgrad(r) = 2πnmR
3

c

(
m2 − 1
m2 + 2

)
∇I(r), (2-35)

Since the gradient force is conservative, we can define the optical potential:

V (r) = −2πnmR
3

c

(
m2 − 1
m2 + 2

)
I(r). (2-36)

This equation states a linear relation between the optical potential of a laser
beam and the mechanical energy of a conservative force field. When a tiny
particle is nearby the local maximum of an optical mode, such as a Gaussian
beam, it is pulled towards the focal point. To confine such particle in a
stable optical trap, the local maxima have to be |V0,min| ⪆ 10K0 [41] where
K0 = 3kBT/2 is the average kinetic energy of a particle in thermal equilibrium
with its surrounding medium. In the next chapter we will explore optical
potentials not only in the Gaussian mode but for all possible two-dimensional
structured light intensity distributions at the focal point.

2.6.3
Generalized Lorenz-Mie theory

So far we have discussed optical forces in two extreme regimes where their
expressions assume simplified forms, namely the geometric optics and dipole
regimes. Instead, for particles with sizes comparable to the wavelength of the
laser beam, R ≈ λ, none of the above descriptions holds true and we need to
use the so-called Generalized Lorenz-Mie theory. The optical forces and torques
are results of the transfers of momentum and angular momentum from the
electromagnetic field to the particle, being essentially a problem of computing
the light scattering patterns of outgoing fields given the input patterns. A full
discussion of the general scattering problem and the Maxwell stress tensor that
describes the interaction of light and matter can be found in Ref. [46].

In this work, we are concerned with numerical solutions to this problem.
Assuming the response of the trapped particle is linear with the scattered field,
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i.e. the material has no gain or nonlinear optical properties, the relationship
between the incident and scattered fields must be linear, allowing a simple
matrix equation P = T A, where P and A represent the outgoing and incoming
fields, respectively, and the T-matrix T carries the information on the physical
properties of the particle and the light wavelength. This way, we only need to
calculate T once for a given geometry of the trapped object [50]. Force and
torque fields are then calculated as a function of position within the tweezer.
In the following chapters we use the OTT toolbox developed in Ref. [50] to
perform these calculations with microparticles.
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3
Bright Tweezers

Highly focused laser beams can be used to trap and hold tiny dielectric
particles. The so-called optical tweezers, or Gaussian tweezers as we will refer
to, have many applications due to their use as force sensors [18–20]. To perform
all of these tasks it is essential to perfectly align the laser beam within a
high numerical aperture lens and determine the force exerted by the light
on a trapped particle. By using a Gaussian beam whose Taylor expansion
implies in a quadratic polynomial intensity, we can model the potential applied
to the trapped particle as harmonic. Due to the randomness introduced by
the medium, the spring constant is usually obtained by measuring statistical
quantities associated to the particle’s displacements so one needs to be able to
record it as a function of time.

In this chapter we describe the implementation of an optical tweezer setup
from scratch, capable of trapping dielectric particles in a liquid medium. We
describe the alignment process and two independent calibration methods based
on high and slow sampling frequency detectors, the power spectrum density
(PSD) and the potential analysis, respectively. Moreover, we introduce the SLM
to apply a variety of structured light tweezers relying on the attractive force of
the light when the particle is inside a medium with a smaller refractive index,
np > nm. To join all those types of optical tweezers we coin the name bright
tweezers.

3.1
Experimental setup

The experimental setup for generating a Gaussian tweezer can be seen
in Fig. 3.1. A 780 nm CW laser (Toptica DL-pro) pumps a tapered amplifier
(Toptica BoosTa) yielding a linear polarized beam in the output of a single-
mode, polarization maintaining high-power optical fiber with an approximate
total power of 1.5 W. The output beam is collimated by an aspheric lens and
passes through a half-wave plate, (λ/2, 1), and a polarizing beam splitter (PBS),
PBS1. The transmitted beam is horizontally polarized and passes trough a
second half-wave plate (λ/2, 2). The beam is then modulated by the SLM and is
sent trough a pair of lenses of focal lenghts L1 = 20 cm and L2 = 25 cm; these

DBD
PUC-Rio - Certificação Digital Nº 2112883/CA



Chapter 3. Bright Tweezers 40

lenses preserve the SLM transformation and serve the purpose of magnifying
the generated mode by a factor of 1.25. The laser beam is divided by a second
PBS (PBS2) in which the reflected signal is directed to the optical trap and
the transmission is sent to a CCD (Mode Monitor) for imaging the modulated
beam and performing stability measurements of the structured light mode.

The reflected beam is sent through an oil immersion objective, (OBJ1,
Olympus UPlanFLN 100x adjustable NA = 0.6 - 1.3) of focal length fOBJ1 =
1.8 mm. The beam is focalized inside the sample. In this chapter we use SiO2

beads of radius R = 575 nm (microParticles GmbH) with refractive index
np = 1.45 immersed in a water solution, with a refractive index of nm = 1.33.
Since np > nm, the optical forces are attractive – i.e. the particles are attracted
by the field intensity maxima. The light scattered by the trapped particle is
collected by a second objective lens (OBJ2, Olympus PlanN 10x, NA = 0.25)
and sent to a quadrant photodetector (QPD, New Focus 2931). This QPD
generates signals proportional to the particle’s radial and axial displacements
[51]. Images of the particles are produced by focusing light from an LED into
the sample, collecting it with OBJ1 and focusing onto a CCD (Image) with a
doublet lens L3 of focal distance f3 = 15 cm. We also added a filter (SPF) to
avoid unwanted 780 nm back reflected light in the Image CCD.
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Figure 3.1: Schematic drawing of the setup for optical trapping
with structured light beams. A 780 nm CW laser is split into
orthogonal polarizations by a λ/2 and a PBS. The vertically
polarized component of the beam is modulated by a spatial
light modulator (SLM), sent through a pair of lenses L1 and
L2 for magnification and directed to a microscope objective
(NA = 0.6), to generate the optical trap. For bright tweezer
experiments, the horizontally polarized component is blocked
by a laser dump. The trapping beam passes through the sample
and is collected by a second microscope objective (NA = 0.4)
and used to detect the motion of a trapped microparticle with
a quadrant photodiode (QPD). Image of the trapped particle
is obtained by focusing light from an LED onto the particle,
subsequently collected by the trapping objective, filtered by a
short pass filter (SPF) and focused onto a CCD (Image) using
lens L3.

3.1.1
Aligning the optical tweezer

To maximize the optical force, it is essential to perfectly align the beam at
perpendicular incidence with respect to the objective. A first rough alignment
method consists in making the beam pass through two closed pin-holes (closed
apertures). As shown in Fig. 3.2, our setup is mounted in a vertical cage where
it is possible to fix these adjustable apertures in the place of the objectives
OBJ1 and OBJ2.

With a pair of two manually steerable mirrors, M1 and M2 in the Fig. 3.2,
it is possible to align the beam following a simple ‘beam walk’ procedure. First,
adjust the position of both mirrors in order to have the laser beam hitting
the center of the mirror (optical elements are usually optimised for a beam
impinging at their centers). Next, fix the mirrors when the reflected beam is
passing through the center of both pin holes. Then, by using the screws of M1,
center the beam on closed PH1. Open PH1 and center PH2 using mirror M2.
Repeat the previous two steps iteratively. In a final step, shut both pin holes
and maximize the transmitted power using a power meter placed above PH2.
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M1

M2

Figure 3.2: Alignment procedure of the experimental setup.

Then we remove the pin holes and place both objectives again.
After the above rough alignment procedure, fine adjustments are made

by visualizing a reflected interference pattern between the incident laser beam
and its reflection from a glass-air interface, produced in a CCD camera [46, 52].
Once a symmetric pattern is obtained, such as the one presented in Fig. 3.3,
the optical tweezer is properly aligned.

a) b)

Figure 3.3: Reflected image of the interference pattern gener-
ated from a beam strongly focused on a glass slide. a) Image
from Ref. [46] comapred to b) the pattern seen in our labora-
tory.

3.1.2
Position tracking

The particle’s position can be measured by a digital camera – as the one
we previously calibrated in Section 2.5 – see Fig. 2.10b). Our digital cameras use
a charge-coupled device (CCD) sensor to capture images. These detectors are
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made with silicon chips that create arrays of photosensitive sites. The incident
light generates charge packets at these sites that are then moved around the
chip before being converted to a voltage output [46]. This method limits the
readout speed and leads to unwanted effects such as saturation in which a
relatively high amount of charges spread into neighboring pixels, creating large
areas with bright spots. While taking images of the trapping beam, it is crucial
to certify that the CCD is not saturated.

The imaging system is created according to Fig. 3.1. An LED is used to
focalize light inside the sample and is then collected by a pair of lenses OBJ1
and L3, with focal lenghs fOBJ1 = 1.8 mm and fL3 = 150 mm, respectively. We
can use the geometric optics formalism discussed in Section 2.5 to calculate
the magnification of the image measured by CCD 01. As the trapped particle
is typically near the focal point of the objective, we have a scenario similar to
Fig. 2.6, where the image has a magnification M = 83.33. Figure 3.4a) shows a
typical frame recorded with our imaging system. We applied a colormap scale for
contrast enhancement. The positions of the particle can be calculated by fitting
the centroid of the intensity distribution in each frame. Assuming the particle
intensity profiles on the CCD are Gaussian, we can find the mean values of x
and y directions with sub-pixel resolution, in the nanometer scale. Following the
Gaussian distribution as written in Eq. (2-11) we can also define ω0 = 2σ where
σ is the standard deviation and ω0 is the radius R of the magnified particle. We
find ω0 =(16.98 ± 0.4) px for the x-direction and ω0 =(15.43 ± 0.3) px for the
y-direction, in agreement with a mean radius of R =(16.2±0.3) px. By applying
the conversion factor aCCD01 = 2.82µm/px, this implies a magnified diameter
of 2R = (91.2 ± 2.0)µm. The particle diameter can then be determined by
dividing the diameter of the particle in the image by the magnification factor
M , yielding the value 2R = (1.09 ± 0.02)µm. This is in excellent agreement
with the nominal value for our spheres, confirming our calibration methods are
good.

In some cases it may be challenging to obtain a good-quality image.
Misalignment of the LED the transmission coefficient for white light in certain
fluids can be a major source of problems. Moreover, external perturbations or
effects of optical force may shift the equilibrium position of a trapped particle,
slightly moving it away from the objective focal plane, causing image distortions
(see Chapter 4 for an example of such problem). To mitigate these limitation we
can apply image processing techniques [53]. Figure 3.5a) shows a bad quality
image. To improve signal-to-noise ratio, we apply a histogram equalization
transformation that adjusts the global contrast of the original image [53], as
shown in Fig. 3.5b). In the following we apply two filters iteratively: a median
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d)

c)a) b)

Figure 3.4: Detecting centroid of a CCD image. a) Original
image. b) Colorized image, for better visualization. c-d)
Gaussian fits to the intensity levels in c) x and d) y directions.

blurring filter calculates the mean value of all pixels in the neighborhood of
a central one and replaces it with this mean value. This filter is widely used
to remove the so-called salt-and-pepper noise - randomly occurring white and
black pixels that are generally caused by sharp and sudden disturbances in the
image signal [54] - present in Fig. 3.5b). A second filter, the Gaussian blurring,
is applied; this is very similar to the first filter, but instead of using a simple
mean it calculates a weighted mean based on a Gaussian distribution. The final
result is shown in Fig. 3.5c). Note that the salt-and-pepper noise was removed
as well as the two black dots in the right center of the images that we later
discovered to be an imperfection in the camera.

Next we apply a color mask to select the desired circle and execute a
Canny edges algorithm to detect the contours considering only circles with
realistic values of radius, as shown in Fig. 3.5d-e). Fig. 3.5f) shows the final
result. This process returns the centroid and radius of the particle agreeing
with the first model.

Once the tweezer is aligned and we are capable of measuring the position
of a trapped particle, we need to calibrate the optical forces exerted by the
beam on the trapped particle. This calibration then allows us to use the tweezer
as a force sensor. When a particle is optically trapped in a Gaussian beam, it
is subjected to an approximately harmonic potential and hence, to a restoring
force proportional to its displacements. The calibration of an optical trap
consists of the determination of the stiffness constant ki (i = x, y, z) of the
various directions defining the three-dimensional harmonic potential. In general,
these spring constants depend both on the properties of the light beam and the
particle. In the next two sections, we discuss the procedure to calibrate such
force based on two different methods: one employing a slow data acquisition
detector (sampling rates on the order of Hz) based on a CCD and the second
using a quadrant QPD, with a fast acquisition rate (sampling rates on the
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order of dozens of kHz).

a)          b)                                                 c)    

d)          e)                                                 f)

Figure 3.5: Image processing techniques applied to particle
detection. a) Original image. b) Increasing the contrast. c)
Applying a median filter and a Gaussian filter. d) Application
of a color mask to select the desired circle. e) Applying a Canny
edges transformation in the image to extract the contours that
exists in the modified image. f) Final result.

3.2
Potential analysis

In thermal equilibrium and in the limit that conservative forces dominates
over dissipative forces, we can implement the potential analysis method. This
method works for generic confining potentials U(r) and is based on the
probability density ρ(r) of finding the particle at a given position r. According
to the Maxwell-Boltzmann distribution,

ρ(r) = ρ0 exp
(

−U(r)
kbT

)
, (3-1)

where ρ0 is a normalization factor ensuring
∫∞

0 ρ(r)dr = 1, T is the temperature
of the medium in which the particle is immersed and kb is Boltzmann’s constant.
The potential can be reconstructed by taking the natural logarithmic of the
above equation,

U(r) = −kBT ln
(
ρ(x)
ρ0

)
. (3-2)

The probability distribution ρ(r) can be obtained by acquiring large
data-sets of the particle’s position; note the coordinates of the particle need
not be uncorrelated [55], meaning this method works independently of the
detector’s acquisition time ∆t = t− t0 and the characteristic relaxation time
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for a particle in a harmonic potential in the overdamped regime, τ = γ/k. So
long as the system is in equilibrium, the potential analysis can be employed
as a characterization method, regardless of the harmonic approximation. As a
final remark, this method does not rely on any knowledge of the particle or
medium properties, in contrast to other methods such as the power spectrum
density analysis.

3.3
Power spectrum density

Among the most employed techniques to calibrate optical tweezers is the
power spectrum density [55,56]. In contrast to the potential analysis method,
it has the advantage of working in the frequency domain, which enables one to
filter sources of noise such as mechanical perturbations and electronic noise. As
a first example, consider Fig. 3.6, where an unwanted modulation introduced
by the SLM can be singled out and filtered.

101 102 103 104

Frequency (Hz)

10 6

10 5

10 4

In
te

ns
ity

(a
.u

.)

Noise signal

Figure 3.6: Raw PSD of a beam modulated by the SLM
displaying unwanted time-dependent modulations between
100 Hz and 1 kHz. The PSD is obtained by averaging 10
traces of the QPD SUM signal in the time-domain, at a
sampling frequency of 25kHz. We can see well-defined peaks
corresponding to 120 Hz, 240 Hz, 360 Hz and 600 Hz frequencies.
We systematically eliminate these peaks for all measurements
from now on. Note the highest oscillation peak occurs at 120 Hz,
and originates from the intensity of ambient light modulated
by the 60 AC electricity grid.

Beyond characterizing the noise in the setup, the PSD method can be used
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to calibrate a harmonic oscillator subject to Brownian motion. The motion of
a sphere of radius R and mass m confined in a harmonic potential is described
by the Langevin equation,

mẍ(t) + γ0ẋ(t) + kx(t) = (2kBTγ0)1/2η(t), (3-3)
where x(t) is the trapped particle’s stochastic trajectory, γ0 the friction
coefficient, k the spring constant and T the temperature of the medium in which
the particle is immersed. The term (2kBTγ0)1/2η(t) represents a Brownian force
modeled as a random Gaussian process at temperature T . The η(t) factor is
defined such that for all t and t′,

⟨η(t)⟩ = 0 ; ⟨η(t), η(t′)⟩ = δt,t′ . (3-4)
We can calculate γ0 using Stokes’s law,

γ0 = 6πρνR, (3-5)
where ρ is the fluid’s density and ν the kinematic viscosity. Eq. (3-3) can be
simplified by considering the trapped microsphere is immersed in water. In
this case, inertia plays no role in the dynamics of the microparticle, and the
damping forces are much more pronounced than inertial ones. We can introduce
the Reynolds number, which quantifies the ratio of typical inertial forces to
viscous force [57], inertial forces

viscous forces ≈ R = Rv

ν
. (3-6)

For water, ν ≈ 10−2 cm2/s, while v ≈ 30µm/s, which implies R ≈ 10−4. Hence
we simplify Langevin’s equation to:

ẋ(t) + 2πfcx(t) = (2D)1/2η(t), (3-7)
where we introduced the corner frequency fc = k/(2πγ) and diffusion constant
D = kBT/γ0. Note that Eq. (3-7) refers to overdamped systems, typically of wet
tweezers, while Eq. (3-3) refers to more general cases as levitated nanospheres
in vacuum where the drag coefficient is much smaller [58, 59].

In the following we repeat the procedure detailed in Ref. [56]. We calculate
the Fourier transform of x(t), x̃k,

x̃k(fk) =
∫ Tmsr/2

−Tmsr/2
dtx(t)ei2πfkt

= (2D)1/2η̃k

2π(fc − ifk) ,
(3-8)

where Tmsr is the recording time of x(t). The PSD is then conveniently calculated
through the square modulus of x̃k divided by Tmsr. For a harmonic potential,
the PSD assumes a Lorentzian form,
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Pk(f) ≡ |x̃k|2

Tmsr

= D|ñk|2Tmsr

2π2Tmsr(f 2
c + f 2

k )

= D/(2π2)
(f 2

c + f 2
k ) ,

(3-9)

where we have used ⟨η̃k⟩ = 0 and ⟨η̃k ∗ η̃l⟩ = Tmsrδk,l since η(t) is an uncorrelated
random variable.

In fact, the experimental data is sampled at frequency fsampling = 1/∆t
and hence the measured trajectory is a discrete time series. Although Eq. (3-9)
fits experimental data for 0 < fk ≤ fNyq, where fNyq ≡ fsampling/2, it should
only be considered in the case of fc ≪ fNyq. Out of this interval, aliasing effects
becomes more expressive and one should implement the aliased Lorentzian
curve [56], calculated through a discrete Fourier transform of x(t),

Pk,aliased(f) = (∆x2∆t)
1 + c2 − 2c cos(2πk/N) , (3-10)

where we have defined the constants:

c ≡ exp(−πfc/fNyq), (3-11a)

∆x ≡
(

(1 − c2)D
2πfc

)1/2

. (3-11b)

Note that Eq.3-10 becomes the Lorentzian curve in the limit that fc ≪ fNyq

and |fk| ≪ fNyq.
Although some groups measure the PSD with cameras, typically with high

sampling rate CMOS sensors [60], the usual procedure is to use photodetectors
or QPDs although the latter is characterized for having a typical low frequency
response above 100 kHz. In the next subsections we introduce the working
principle of a position-sensitive detector and a knife-edge detector based on
two photodetectors as an alternative to a QPD sensor.

3.3.1
Position sensitive detectors

A QPD has a linear relation between position and current across its
active area. When seed by an input optical mode, internal electrodes provide
independent current signals named IA, IB, IC and ID providing three outputs
X(t), Y (t) and SUM(t) related as,

X(t) = IA + ID − (IB + IC)
IA + IB + IC + ID

, (3-12a)
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Y (t) = IA + IB − (IC + ID)
IA + IB + IC + ID

, (3-12b)

SUM(t) = IA + IB + IC + ID. (3-12c)

Particle displacements inside the optical trap induce small deviations
in the scattered beam, which can be read in the QPD. This information is
obtained by dividing X(t) by S(t) and Y (t) by S(t) for each time t to get αxx(t)
and αyy(t), respectively. The constants αx and αy are conversion factors from
units of voltage to a physical unit of lenght, and x(t), y(t) are the particle’s
coordinates at each time t. To characterize these constants we need to replace
x(t) for αxx(t) in Eq. (3-7) giving rise to the same Lorentzian curve with a new
factor,

Pk(f) = α2
x

D/(2π2)
(f 2

c + f 2
k ) . (3-13)

Hence, by assuming the medium’s temperature is known and calculating the
drag coefficient using Eq.(3-5), we fit our experimental data with Eq. (3-9) to
find the empirical value Dexp and divide it by the theoretical diffusion coefficient
D to obtain,

αx =
√
Dexp,x

D
, (3-14a)

αy =
√
Dexp,y

D
. (3-14b)

When the distance h between the trapped particle and the surface is well
known, one can also calculate the drag coefficient using [41]

γs(T ) = γ(T )
1 − 9

16

(
R
h

)
+ 1

8

(
R
h

)3
− 45

256

(
R
h

)4
− 1

16

(
R
h

)5 . (3-15)

In our experiment, although we cannot determine exactly the value of h, it is
surely much bigger than particle radius R. Assuming then R/h −→ 0 we can
safely use Eq. (3-5) to calculate γ0.

Fig 3.7 shows the PSD of bright Gaussian tweezer presenting corner
frequencies fcx = (942.4 ± 23.8) Hz and fc,y = (931.8 ± 22.3) Hz, which agree
to each other within the uncertainty. The PSD was numerically calculated
from time series of the particle motion using the Welch method, and fitted by
an Aliased Lorentzian (Eq.(3-10)). Each point (error bar) in the figure is the
mean value (standard deviation) obtained from 10 PSD’s. Each of these PSD’s
is calculated by averaging 10 measured traces with a sampling frequency of
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25 kHz.
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Figure 3.7: Measured PSDs and the resulting fits for a Gaussian
tweezer experiment.

We fit a Lorentzian curve with a constant noise term; we find αx =
(3.56 ± 0.08) × 105 m/V and αy = (3.94 ± 0.08) × 105 m/V. The error bars are
calculated based on the estimated standard deviation of the fitted parameters.
For completeness, we show examples of the particle’s trajectories from which
we obtained these measurements in Fig. 3.8.
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Figure 3.8: Example traces of the particle stochastic trajectory.

3.3.2
Knife-Edge detector

An interesting alternative to a QPD sensor is the knife-edge detector
[61]. In this detection setup, the collected beam is divided into two paths with
an additional beam splitter. One of the beams is focused on a photodetector
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yielding a signal S(t), proportional to the beam’s total power P (t). The other
beam is partially blocked by a thin plate, denoted as a knife, such that half of
the beam power in that path is blocked when the particle is at the center of
the trap. The other half that passes through the knife is focused on a second
regular photodetector.

Once again we explore the fact that deviation angles from the scattered
light are proportional to the particle’s position. As the first detector is insensitive
to these variations, the second detector gives us a signal Xk(t) containing a
term proportional to both P (t) and x(t) and an offset term relative to the
detected power P (t) when the particle is not radially displaced. Due to possible
electronic noise sources, we add two variables ηX(t) and ηS(t) for X and S

channels,

Xk(t)
S(t) = (β0 + βxx(t)) P (t) + ηx(t)

βSP (t) + ηS(t) , (3-16)

where we have defined β0, βx and βS proportionality constants. In the following
we assume the amplitude of the electronic noise in the S Channel is much
smaller than the total power, |ηS(t)| ≪ S(t). We then Taylor expand,

Xk(t)
S(t) ≈ ((β0 + βxx(t)) P (t) + ηx(t))

(
1 − ηS(t)

βSP (t)

)

≈ β0

βS

+ βX

βS

x(t) + 1
βS⟨P (t)⟩ηX(t) − β0

β2
S⟨P (t)⟩ηS(t),

(3-17)

where we have considered the variations in Xk(t) due to radial displacementis
much smaller than the half beam’s signal, |βxx(t)P (t)| ≪ β0P (t) which means
βxx(t)ηS(t)/αs term can be neglected. Terms with multiplicative noise factors
are also neglected. Finally, we also considered the variations in P (t) due to
axial displacements are much smaller than P (t) and hence we neglect it by just
adopting ⟨P (t)⟩ instead.

Since x(t), ηX(t) and ηS(t) are all independent of each other, the power
spectrum of the above equation is the sum of the power spectrum of each one
of the components. Considering ηX(t) and ηS(t) as independent white noise,
the PSD of the third and fourth term in Eq. (3-17) are constant terms in the
overall power spectrum. Hence, the resulting PSD should be fitted to an aliased
Lorentzian added to a constant term [61].

The knife-edge detector allows one to measure the position of a trapped
particle using regular photodetectors with higher bandwidth than QPDs and
other similar position-sensitive devices [61]. The derivation was done for the
x(t) direction but it can be extended for the y(t) just by rotating the knife in
an orthogonal orientation and repeating the procedure. Actually, it is possible
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to instantaneously fully calibrate the optical trap with three independent
silicon detectors. Combining these setups with low-noise electronics opens the
possibility of calibrating even levitated nanoparticles when higher oscillation
frequencies are accessed. This technique is an extension of the use of knife-edge
detection proposed in the field of high-speed atomic force microscopy [62].

a) b)

Figure 3.9: Gaussian tweezer for different trapping powers a)
Measured PSD and the resultant fit. b) Spring constant as a
function of trapping power.

3.4
Structured light tweezer

Beyond the Gaussian beam, the ability to customize the phase and
amplitude of an electric field has been widely used in optical tweezers in
the last few years [29]. Structured light beams present numerous possibilities
to study the interaction between light and matter due to transfer of OAM,
induced motion via time-dependent optical potentials and even manipulation
of nanometer-sized targets.

In this section, we discuss two ideas for optical trapping with structured
light in bright tweezers. We first analyze a nonlinear tweezer, that is, an optical
beam exerting a harmonic potential plus a quartic perturbation, as in a Duffing
oscillator. Next, we present the Bean Beam experiment: a superposition of a
Laguerre-Gauss and a Gaussian mode that, upon variation of relative phase,
produces rotating pattern capable of inducing circular motions of a trapped
particle. This has been previously demonstrated using silica microspheres and
Chinese hamster chromosomes in an interferometer-based setup [63]. We present
our experimental results for the bean-beam experiment as well as an idea to
calibrate the mode’s NA based on measurements of the particle’s trajectory.
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3.4.1
Non-linear tweezer

We have so far treated the Gaussian tweezer as a harmonic potential,
but in fact there are higher order corrctions to the harmonic potential which
can become important for large particle displacements. In this scenario, a
Rayleigh particle R < λ/10 may be subject to nonlinear forces that to a
first approximation induce a shift in the particle’s corner frequency in both
the overdamped and underdamped regimes [64]. Similar behaviors have been
observed by previous works using different approaches: by measuring the
expected shift in the PSD [65] and the particle’s trajectory out-of-equilibrium,
in the transient time in which the variance of the particle’s position increases
depending on the oscillator’s parameters [66].

In Gaussian tweezers, these nonlinear effects are small, however, it is
possible to enhance nonlinearities using external electric feedback [67] or
structured light beams. Consider for instance a superposition between LG0,0,
LG1,0 and LG2,0 [64],

Enl =EGauss + A1E
LG
1,0 + A2E

LG
2,0 , (3-18)

where amplitudes A1, A2 are real coefficients. To eliminate coupling between
axial and radial directions we may have [64],

A2 =
−15 − 8A1 +

√
220 + 220A1 + 49A2

1

5 . (3-19)
Taylor expanding the intensity of this beam to the fourth order around the
origin leads us to a three-dimensional extension of a Duffing oscillator,

I(ρ, z)
I0

= k + kρ2
ρ2

ω2
0

+ kρ4
ρ4

ω4
0

+ kz2
z2

zR

+ kz4
z4

z4
R

, (3-20)

where kρ2 , kρ4 , kz2 and kz4 are functions of A1 which can be tuned over a wide
range of values [64]. Figure 3.10 shows the intensity pattern of this structured
mode in the axial direction and Fig. 3.11 shows its intensity distribution in
x and z directions along with the optical force applied to a R = 70 nm SiO2

sphere immersed in water. Note that the blue and red curves scale with ω0 and
zR, respectively.

The non-linear nature of the optical force generated by the proposed
superposition can be seen when compared with a Gaussian beam, as in Fig.3.12.
The normalized red (Gaussian) and blue (non-linear beam) curves have a similar
behavior near the origin where the cubic term is negligible when compared with
the first-order term. As the particle moves away from the equilibrium point, it
experiences a stronger force against its displacement.
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Figure 3.10: Intensity pattern of the non-linear structured light
beam in the axial direction.
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Figure 3.11: Intensity distribution and optical forces generated
by the non-linear structured light beam
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Figure 3.12: Optical forces generated by the Gaussian and the
non-linear structured beam
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3.4.2
The Bean Beam experiment

An interesting phenomenon occurs for a superposition between a Gaussian
and a LG1,0 mode. Interfering both electric fields, Eq. (2-8) and Eq.(2-12), with
a relative phase of θ leads us to

EBean =EGauss + eiθELG
1,0

= EGauss

[
1 +

√
2ρ

ω(z)e
i(θ+ϕ−ζ(z)

]
.

(3-21)

The corresponding intensity is,

IBean(ρ, ϕ, z) = IGauss

1 + 2
√

2ρ
ω(z) cos(θ + ϕ− ζ(z)) +

(√
2ρ

ω(z)

)2
= I0

ω2
0

ω(z)2 exp
[
− 2ρ2

ω(z)2

] 1 + 2
√

2ρ
ω(z) cos(θ + ϕ− ζ(z)) +

(√
2ρ

ω(z)

)2 .
(3-22)

As discussed in Section 2.6, for m > 1, particles find equilibrium in the most
intense point of a laser beam, which occurs close to the focal plane, allowing us
to assume z = 0 in the above equation. The resulting intensity at z = 0 is then,

IBean(ρ, ϕ, 0) = I0 exp
[
−2ρ2

ω2
0

] 1 + 2
√

2ρ
ω0

cos(θ + ϕ) +
(√

2ρ
ω0

)2 . (3-23)

The theoretical patterns are compared to experimental frames in Fig. 3.13 for
different values of the phase θ. Note that the pattern has an intensity maxima
displaced from the origin, and by adjusting θ we can rotate the intensity
maximum around the z-axis. A trapped particle would follow this rotation.

θ=0 θ=π/2 θ=π θ=3π/2

-2.0 2.00.0 2.00.0 2.00.0 2.00.0
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y

Figure 3.13: Bean Beam pattern. Calculated (top) and experi-
mental (bottom) frames for a varying relative phase θ.
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Taking y = 0, we can calculate the coordinate of maximum intensity
along the x direction, xmax/ω0 =

√
5−1

2
√

2 . This is approximately the x coordinate
of the particle’s equilibrium position. When we rotate the bean pattern by
changing θ, we expect to observe a circular particle trajectory with diameter
given by 2R = 2

√
5−1

2
√

2 ω0. Given R we then can calculate the NA of the beam,

NA = λ

πnm

(√
5 − 1

2
√

2R

)
. (3-24)

This expression provides a mean of measuring the NA from a property of the
particle’s trajectory, namely its radius R.

Estimating the NA of a beam is very important for characterizing
optical forces, in particular in our case where the most of the intensity is not
concentrated in the central point. In this situation, overfilling the objective lens
aperture may introduce border effects that deteriorate the intensity distribution
of the incident beam in the focal plane, causing imperfections in the optical
trap. To avoid unwanted border and diffraction effects, we need to guarantee
the beam NA is smaller than the NA of the objective. Moreover, measuring
the NA of a highly focused beam is challenging, due to the fast divergence of
the intensity after the focal plane. The Bean Beam presents a solution to this
problem, enabling calibration of the beam parameters through measurements
of the trapped particle motion. We now describe this calibration technique in
detail.

Figure 3.14 shows the result of a rotation experiment using the Bean
Beam on a microparticle. Each frame in the image corresponds to a discrete
rotation of π/4. We would like to use this data to measure the beam’s NA but
to do so, some modelling is required first.

The particle executes a circular motion in a given coordinate system
(x, y, z), parameterized by x = R cosϕ, y = R sinϕ and z = 0. What we
measure, instead, are the coordinates of the particle in a different reference frame
(x′, y′, z′), rotated with respect to (x, y, z). Assuming a generic rotation from
the unprimed to primed coordinate systems, the measured trajectory deviates
from the perfect circular trajectory by mixing the sinϕ and cosϕ quadratures.
Define the mixing parameters αij, Ai and Bi as the linear coefficients appearing
in,

x′ = α11R cosϕ+ α12R sinϕ = Ax cosϕ+Bx sinϕ,
y′ = α21R cosϕ+ α22R sinϕ = Ay cosϕ+By sinϕ.

(3-25)

We can measure the Ai and Bi parameters by fitting the observed trajectory
with Eq. (3-25).

To figure out the relation between Aij and the rotation angles, consider
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Figure 3.14: Microparticle rotation under the Bean Beam.

M as the Euler rotation matrix with M = Mz(δ)My(θ)Mx(ψ), where δ, θ1 and
ψ are the rotation angles about the z, y and x directions. By symmetry, we
can assume rotations around the axial direction are irrelevant, thus ψ = 0. The
matrix M is then

M =


cos θ cos δ sinψ sin θ cos δ − cosψ sin δ cosψ sin θ cos δ + sinψ sin δ
cos θ sin δ sinψ sin θ sin δ + cosψ cos δ cosψ sin θ sin δ − sinψ cos δ

− sin θ sinψ cos θ cosψ cos θ



=


cos θ sinψ sin θ cosψ sin θ

0 cosψ − sinψ
− sin θ sinψ cos θ cosψ cos θ

 .
(3-26)

By substituting these parameters in Eq. (3-25) we find the desired relations,
and using trigonometric identities we arrive at:

A2
x = R2 cos2 θ ⇒ R2 sin2 θ = R2 − A2

x,

Ay = 0,

B2
x = R2 sin2 ψ sin2 θ

B2
y = R2 cos2 ψ

B2
x + sin2 θB2

y = R2 sin2 θ.

(3-27)

After some algebra with the above equations, we find a quadratic function for
R2 whose solutions are described as a function of the fitted parameters above,

R = ±

√
α±

√
α2 − 4β
2 , (3-28)

where we have defined,

α = A2
x +B2

x +B2
y , (3-29a)

β = A2
xB

2
y , (3-29b)

and the physical radius is the positive real solution.
The resulting fit employing this analysis is shown in Fig. 3.15. We find a

radius of R = 0.18µm from which we calculate ω0 = 0.41µm. This value agrees
1Note this θ is not the same angle variable as the superposition relative phase in the

Bean Beam.
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with the expectation for a Bean Beam with estimated size ωc = 1.125 mm prior
to OBJ1. If we assume the geometric optics approximation of Eq. (2-21) for
f = 1.8 mm then ω0,g = 0.40µm. The similarities between both results indicate
agreement between the theory and this calibration method. Finally, by using
Eq. (3-24) with the refractive index of water nm = 1.33, we find NA= 0.46.
As we will see, this value is in agreement with other measurements performed
during the dark focus tweezer experiment.
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Figure 3.15: Trajectory coordinates for a particle undergoing
rotation by the Bean Beam and corresponding fits according
to the analysis described in the main text. This data yields
a trajectory radius of R = 0.18µm and a Bean Beam NA
= 0.46, in agreement with later measurements in the dark
focus tweezer experiment.

3.5
Discussion

The addition of structured light beams brings new functionalities to the
optical manipulation toolbox. Beyond the static harmonic confining potentials,
it is possible to explore non-linear potentials to study the limitations of classical
thermodynamics in overdamped systems (such as stochastic heat engines [68])
and in underdamped regimes. In underdamped situations, the surrounding gas
is not in thermal equilibrium with the levitated particle, which can provide
an experimental platform for new insights into stochastic processes in non-
equilibrium physics [69].

Structured light can also be used to implement time-dependent forces. For
a periodic set of calculated patterns displayed automatically on SLM’s screen, it
is possible to create optical beams whose intensity distribution varies in time, as
we did to induce motion in the Bean Beam experiment. Due to the limitations
of SLM’s refresh rate discussed in Section 2.5, modulation frequency cannot
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be higher than 60 Hz. However, with the recent advances in nanomaterials
and active photonics, spatial light modulators based on thin organic films can
reach modulation frequencies as high as 50 MHz [70]. This promising active
medium can be used as a high-frequency amplitude modulator in the future –
even as a cooling actuator in parametric feedback systems [23,71,72], since it
can modulate laser beam intensity faster than the particle’s natural oscillation
frequency achieved in levitated systems [73–75]

Note that the induced rotation generated in the Bean Beam experiment is
due to the variation of the relative phase between the LG0,0 and LG0,1 modes,
and not because of a transfer of orbital angular momentum (OAM) between
light and matter. Although LG0,1 presents an angular momentum of ℏ per
photon, to observe a rotation effect the target must be able to convert OAM
states of light and yet be transparent enough to enable optical confinement. This
happens for anisotropic and inhomogeneous materials, for example q-plates.
As we utilize the same kind of SiO2 microparticles during this entire work, we
were not able to see such effects.

As discussed in Section 2.6 there is also a third force component due
to light’s circular polarization that is not explored in this work. The first
experiments exploring the exchange of spin angular momentum (SAM) with
waveplates dated back almost a hundred years [2] and even today it is widely
repeated especially in levitated systems where nanodumbells may reach rotation
frequencies of GHz [76]. Polarization is another degree of freedom that can be
shaped spatially within a trapping beam and compose a more general class of
light fields, commonly known as vector beams. Combining amplitude, phase and
polarization modulations facilitates joint orbital and spin angular momentum
modification in two- and three-dimensional structured light landscapes being of
great interest for trapping polarization-sensitive objects in future applications
[28].
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4
Dark Tweezers

As first observed by Arthur Ashkin, a Gaussian beam repels air droplets
immersed in water [3]. This effect is a demonstration of the repulsive interaction
that occurs when the refractive index of the particle is smaller than that of its
surrounding medium, np < nm. Within the knowledge of engineered optical
beams, we can also explore these repulsive optical forces to create an optical
trap. As presented in Chapter 2, the OBB is a structured beam with a dark
central region surrounded by light in all directions. The idea is to have a particle
inside the OBB being subject to multiple repulsion towards an equilibrium
point where there is no incidence of light. The dark focus tweezer [34] can
present tunable non-harmonic potentials, providing a laboratory for studies of
non-linear stochastic dynamics [64, 77]. Moreover, trapping objects in the dark
can be extremely beneficial in the fields of active matter and biophysics, where
laser damage thresholds limit in-vivo experiments with cells [78–80].

In this chapter we describe the implementation of a dark tweezer for
microparticles as the one proposed and theoretically analyzed in [77]. Earlier
experiments have employed structured light and optical bottle beams to
manipulate atoms in blue-detuned lasers [81–83] and micron-sized objects
through photophoretic and thermal forces [84]. Here we demonstrate, to the best
of our knowledge for the first time, stable trapping and controlled manipulation
of microparticles through optical forces alone, originating from structured
light beams forming a dark focus. As we will demonstrate, the DFT induces
a strongly non-harmonic potential landscape reflected as non-Gaussianity in
the statistical properties of the particle’s stochastic trajectory. We probe the
particle motion both through the method of power spectrum density formalism
as well as potential analysis and reconstruct the optical potential landscape
through the matching of data with numerical simulations.

4.1
Experimental setup

The experimental setup for dark tweezers is the same as shown in Fig. 3.1
in Chapter 3 with addition of an auxiliary Gaussian mode. We remove the laser
dump in Fig 3.1 and add a telescope (lens L4 and L5) with L5/L4 = L2/L1
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such that the probe and trapping beam have approximately the same beam
radius in order to avoid misplacement in the focal point of the objective. The
probe beam thus is reflected in BS2 and using a third half-wave plate (λ/2, 3)
we control the amount of power sent to the objective. A polarizer is also placed
in the front of QPD to filter the scattered beam. Hence, we have access to the
information carried by one of the beams alone.
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Figure 4.1: Illustrated diagram for experimental optical trap-
ping in a dark focus. Setup is very similar to the one presented
in Fig. 3.1 with the addition of an auxiliary beam and a few
optical components.

4.1.1
Sample preparation

As we discussed in Chapter 2.6, stable trapping in a dark tweezer requires
a medium of refractive index higher than that of the trapped particle. We use
silica beads of radius R = 575 nm (microParticles GmbH) with refractive index
np = 1.45 at 780 nm. A myriad of possible media exists for this experiment, most
notably oils and organic compounds including agar-agar solution and Nujol
mineral oil. After careful consideration and tests, clover oil was selected for its
refractive index np = 1.53, relatively low viscosity and convenient antimicrobial
properties [85]. The hydrophobic nature of the oil increases the tendency of
the silica microspheres to aggregate due to hydrophilic bonds between SiO2

molecules. These ensembles, or microdumbells, appeared a few times in the
solution although the experiment was conducted with single microparticles. We
measured a clover oil transmission for 780 nm light of ηclover = 85% which was
included in the simulations as a prefactor in the laser power.

Inspired by possible applications in biology, we also tried to prepare
samples based on water droplets in oil. Besides being shaped due to environ-
mental conditions and self-propulsion, some microorganisms do not have a rigid
structure as a spherical solid and hence an emulsion could be used to emulate
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this property inside an optical trap. Moreover, in general, microorganisms have
a refractive index very similar to the water [77], thus justifying the use of
droplets.

Emulsions were prepared by mixing Nujol oil, water and surfactant. The
latter is a chemical compound with hydrophilic and hydrophobic components at
each end, responsible for gathering both phases together in a spherical format.

We tried solutions with different concentrations and despite we were able
to exert repulsion forces on the particles, we weren’t capable of trapping in
the DFT due to the natural instability of emulsions and non-homogeneity of
the solution, with spheres of several diameters, as shown in Fig. 4.2a. We also
observed conglomerates of what we believe to be clusters of droplets that move
a large amount of water when traveling trough the sample, Fig. 4.2b.

a) b)

Figure 4.2: Emulsions of oil in water. a) Liquid droplets
were non-homogeneous. b) Clusters of droplets disturbing
the solution.

4.1.2
Probe beam calibration

In the DFT, a particle is expected to be trapped in the region with
no incidence of light, implying a greatly reduced scattering of photons when
compared to bright tweezers. The traditional technique of collecting light
scattered from the trapping beam as we did in Chapter 3 dos not work for the
DFT. To overcome this, we employ an auxiliary probe beam in a Gaussian
mode with polarization orthogonal to the trapping beam in such way they do
not interfere with one each other.

Being distinguishable and provided it has low power, the probe beam
should not significantly alter the properties of the original trap. Moreover, any
eventual residual scattering noise due to the trapping beam can be filtered by
a polarizer aligned before the detector, as shown in Fig. 4.1, allowing access to
the information carried by the probe beam alone.

The alignment of the probe beam was done with the same procedure
described in Chapter 3. However, to determine the optimal power of operation
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we perform standard Gaussian tweezer experiments with both lasers on. The
idea is to probe the particle’s movement by reading the scattered light of the
auxiliary beam in the QPD. A particle immersed in an aqueous solution is
trapped at fixed power of PT = 39 mW. We collect data from QPD and evaluate
the PSD which provides a reference corner frequency of fc = (428.8 ± 14) Hz
(red). We initially turn on the probe beam at PP = 91 mW and by adjusting the
polarizer we find fc = (1272.2 ± 40) Hz (blue). Then we progressively decrease
the probe beam power. For PP = 45 mW, we have fc =(770.8 ± 19) Hz (orange).
For PP = 19 mW, we found fc = (492.0 ± 22) Hz (green).

a) b)

Figure 4.3: Probe beam calibration. a) PSD of probe beam
scattering at different intensities for a particle trapped at fixed
power PT = 39 mW, with corner frequency fc = (428.8±14) Hz
(red). The probe beam power PP is progressively decreased:
PP = 91 mW, fc = (1272.2 ± 40) Hz (blue); PP = 45 mW,
fc =(770.8±19) Hz (orange); PP = 19 mW, fc = (492.0±22) Hz
(green). For comparison, the PSD of the probe beam in the
absence of a trap is also shown (grey). Probe beam powers
below 19 mW allows for position read-out without significant
disturbance to the trap. b) Corner frequency as a function of
the total power.

As expected, the measured corner frequency approaches the reference as
we decrease the probe beam power. When the reference PSD and probe beam
PSD are indistinguishable within error bars, we determine the maximum probe
beam power that does not disturb the trap; we find this to be PP ≤ 19 mW.
For comparison, the PSD of the probe beam in absence of the trapping beam
is also shown in grey curve. The minimum power is defined according to the
dissipative elements in our experiment in addition to the sensibility of the
QPD. We operate near the maximum allowed value in order to increase the
signal-noise ratio. All data points as well as the curve fit are displayed in Fig.
4.3 a). Each point is the mean value obtained from 5 PSD’s. Each of these
PSD’s is calculated by averaging 10 measured traces with a sampling frequency
of 25kHz. Fig.4.3 b) shows the linear relation between corner frequency and
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total power. As the optical beams are orthogonal polarized, optical forces are
added together creating a total spring’s constant.

4.2
Numerical simulations

To verify the viability of the DFT experiment, we simulate the particle
dynamics under realistic parameters. Resulting forces were calculated using
the OTT toolbox [50] for an OBB created with a superposition of LG0,0 and
LG1,0 dephased by π. We consider a trap power of P = 109 mW inside the
sample and the same particle of R = 575 nm as used in the experiment. Fig.
4.4 shows the simulated optical forces in x and z directions for a variety of
NA. We observe stronger non-harmonic behavior for lower values of NA and
increased amplitude in the optical forces for high values of NA.

NA=0.40

NA=0.50

NA=0.43 NA=0.46

NA=0.53 NA=0.57

Figure 4.4: Simulated forces acting on a trapped sphere for
different laser beam’s NA. Curve blue (salmon) shows the force
in the x (z)direction.

Using the objective lens described in Chapter 3, we can only achieve
NA ≤ 0.60. To achieve maximum NA, we must overfill the objective aperture,
but in our case there is a delicate balance between NA and total beam power. If
the beam size at the entrance of the objective is too large, unwanted border and
diffraction effects start to take place. For this reason we choose to work with a
lower NA, producing a trap large enough to accommodate our particles. From
beam waist measurements and geometric optics considerations we estimate
NA= 0.46.

In our simulations we also consider the effects of the probe beam acting
on the sphere by adding an orthogonal-polarized Gaussian mode with 10 mW of
power and NA= 0.46. Fig. 4.5 shows the forces in x and z directions with and
without the presence of the probe beam. The top figure displays a decreasing
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amplitude in the force acting in the radial direction. Moreover, we can see the
Gaussian mode improves the non-harmonic behavior of the force. In the bottom
figure, we can see a shift of approximately 0.5µm in the equilibrium position
in the axial direction due to the action of the additional repulsive probe beam
force.
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Figure 4.5: Simulated forces on a particle trapped in the OBB
on the x (top) and z (bottom) directions. Salmon (blue) color
represents the trajectories with (without) action of the probe
beam. As expected, the repulsive forces dues to the probe beam
decrease the trap depth and shift the equilibrium position aling
the axial direction.

Once we know the forces, we can numerically simulate the dynamics of the
trapped particle subject to a Langevin equation. Figure 4.6 shows the resulting
traces for the x, y, z directions with and without the probe beam. We see the
action of the probe beam is to slightly enhance the noise in the x, y directions
and shift the equilibrium position along the z direction, as expected.
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Figure 4.6: Simulated traces of the particle inside DFT for
x, y, z direction. Salmon (blue) color represents the trajectories
with (without) action of probe beam.

4.3
Non-harmonic potential

As discussed in Section 2.6, for a radius much smaller than the laser
wavelength (the dipole regime) R < λ0/10, the forces due to a linearly polarized
light beam are decomposed into scattering (non-conservative) and gradient
(conservative) components.

For the OBB [77], near the origin (i.e. ρ ≪ ω0, z ≪ zR), we can expand
the potential as a polynomial function,

V (ρ, z)
V0

≈ kz

2 z
2 − kρzρ

2z2 + kρ

4 ρ
4, (4-1)

where V0 = [2πnmR
3(m2 − 1)/(c(m2 + 2))]I0, kz, kρz, kρ denote the anharmonic

potential strengths. In the dipole regime, these potential parameters are defined
in terms of the beam parameters [77],

kz = 4p2

z2
R

, kρz = 8p2(p+ 1)
ω2

0z
2
R

, kρ = 4p2

ω4
0
. (4-2)
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In our experiment, particles have a radius of R = 575 nm, comparable to
the wavelength λ0 = 780 nm, hence the dynamics of a trapped particle must
be analyzed numerically via generalized Lorentz-Mie scattering theory. We
observe, by simulating the optical potential in this intermediate Lorentz-Mie
regime, that the funcional form of the potential in Eq. (4-1) remains the same,
albeit with different coefficients from the ones in Eq. 4-2. We can thus use the
potential form as an empirical model for the OBB forces.

To validate this polynomial model, we simulated the optical forces
considering particles of different radii using the OTT toolbox. We fit a
polynomial to the force vectors fx, fy and fz obtained from the simulation,
returning estimations for each of the components, namely f̂x, f̂y and f̂z. The
quality of the fit in each axis can be evaluated using a root-mean-squared error
(RMSE) divided by the root-mean-square force. Finally, an average RMSE
over each axis is considered where N represents the number of points used for
discretization during simulation,

RMSEavg = 1
3

∑
i∈{x,y,z}


√√√√√√√√√

N∑
j=1

(f j
i − f̂ j

i )2

N∑
j=1

f j 2
i

, (4-3)

Fig. 4.7 shows the RMSEavg as a function of particle radius R. Different
values of NA were considered to ensure the approximation is valid under
variations of the trapping beam focusing. The maximum error encountered
is always less than 1.50%, for a particle radius of 350 nm and an NA of 0.58.
For the parameters used in our experiment, the error is 0.416%, validating the
quartic potential model within the experimental parameters.
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Figure 4.7: RMSEavg of the polynomial fit for the optical
forces as a function of the particle radius. Simulations were
executed considering NA = 0.40 ( ), NA = 0.46 ( ), NA =
0.52 ( ) and NA = 0.58 ( ). The conditions in which the
experiment was conducted are represented by the black circle
(•).

4.4
Results

4.4.1
Stable trapping

With all the knowledge acquired from numerical simulations and the
setup properly aligned, we successfully trapped microparticles in the DFT.
As a first evidence of stable trapping, we decided to move the particle in a
controlled square trajectory. By adjusting the SLM diffraction angle, we slightly
moved the central point of the DFT in the focal plane. Fig. 4.8a-d) shows the
iteration of four different trap positions with red dots marking the mean value
of a Gaussian distribution in the x, y plane approximately corresponding to the
microsphere’s center of mass. The trajectory clearly indicates a displacement
large enough to be resolved by our imaging system and hence, stable and
controllable optical trapping is demonstrated. If the particle is left at a fixed
position, it remains there for as long as we let it, up to several hours.

In bright optical tweezers, particles are easily trapped due to the attractive
nature of the optical force, but studying a single microparticle for long times
can be challenging in a concentrated solution, as additional particles will be
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drawn into the trap. Dark tweezers, in contrast, present the opposite effect.
Particles trapped in the DFT are shielded from the influence of external objects
by a repulsive optical force. This isolation effect allows for arbitrarily long
measurements of the particle dynamics. Figs. 4.8e)-h) demonstrates frames of a
trapped particle (marked by the white dotted circle) repelling external objects.
We observe a microdumbbell (bound pairs of microparticles in the solution,
delimited by the black dashed circle) approaching the trapped particle in t = 0
and subsequently being repelled by the OBB intensity shield.

a) b) d)c)

e) f)

t=0s t=54s

h)

t=121s

g)

t=81s

Figure 4.8: a)-d) Stable trapping in the dark focus tweezer:
controlled SLM motion of the trapped particle. e)-h) Shielding
effect: a dumbbell (black dashed contour) is repelled after
approaching a particle trapped (white dashed contour).

4.4.2
PSD analysis

As described in section 3.3, the PSD analysis is one of the most employed
techniques to calibrate optical traps due to its simplicity and the possibility of
filtering frequency-dependent noise. On the other hand, the shape of the PSD
is only precisely known for harmonic potentials, that is, a Lorentzian function.
For non-harmonic potentials, such as the DFT, no analytical form of the PSD
is known beyond perturbation theory [64].

Nevertheless, numerical simulations of a trapped particle in a quartic
potential show that the PSD of the particle motion is well fitted by a Lorentzian
function, despite the exact relation between the effective corner frequency fc,DF T

of the fit and the trap stiffness is unknown [64]. In fact, the PSD method cannot
be directly used to calibrate DFT but we can associate a fitted corner frequency
to another beam parameter, the beam’s NA, that describes the dark focus
dimensions. We verify this effective corner frequency as a consistency check
between numerical simulations of the particle in the DFT and experimental
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data acquired with the probe beam. Fig. 4.9 shows a typical PSD curve for
simulated dynamics in x (left) and z (right) directions for a trapped particle in
the DFT. Simulations were made using NA= 0.50, finding fc,x = (46.0±8.9) Hz
and fc,z = (6.7 ± 2.4) Hz. These traces are obtained by taking the mean value
of three simulated PSD.
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Figure 4.9: Simulated PSD for particle inside DFT for NA=
0.50. Left (right) figure shows the PSD for x (z) direction.

Since the probe beam is essential for measuring high sampling rate position
data, we also simulated how the PSD changes under its presence for various NA’s,
as shown in Fig. 4.10. An approximately linear relation between the effective
corner frequency and NA is found in the presented interval, fc,DF T = aNA + b.
Hence, assuming the relation of NA with width W and height H of the OBB
presented in Section 2.4 we can write,

W = 2ω0 = 2λ0

πNA = 2λ0

π
(

fc,DF T −b

a

) , (4-4a)

H = 2zR = 2nmλ0

πNA2 = 2nmλ0

π
(

fc,DF T −b

a

)2 . (4-4b)

These empirical equations reflect a relation between the effective corner
frequency and the DFT’s dimensions. As the dark focus area decreases, the
particle experience higher corner frequencies. Parameters a and b were obtained
by fitting a straight line to the simulations accounting for the probe beam (blue
curve) in Fig. 4.10, where we find a = 423.1 Hz and b = −179.2 Hz.

Once we measure the effective corner frequency fc,DF T by fitting a
Lorentzian curve to the experimental results of the PSD, we can estimate the
width and height of the dark optical trap. Figure 4.11 shows the measured PSD
of a trapped particle (red dots) and the corresponding fit (red line), together
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Figure 4.10: Corner frequency fc of simulated dynamics with
(blue) and without (red) the probe beam.

with the background scattering noise (grey dots and line) for comparison.
Curves are normalized according to the maximum point of the red line.
We fit a Lorentzian curve to the PSD of the red curve, yielding an effective
corner frequency of fc,OBB = (13.4 ± 0.7) Hz which according to simulations
corresponds to an NA between 0.45 − 0.49. From our empirical Eq. (4-4), we
find a W = (1.09 ± 0.1)µm suggesting our particle of diameter 1.15µm is
subject to loose forces within the dark focal region.

Note that this relation does not calibrate the optical trap by itself since
it does not provide the parameters of Eq. (4-1). We are mainly comparing the
curve fit of the PSD experimental data with simulations in order to estimate the
beam’s NA, but we don’t have enough information to describe the coupled term,
for instance. In the next section, we apply the potential analysis formalism as
an independent calibration technique leading us to the same NA interval, which
demonstrates consistency between both approaches. Moreover, we will be able
to record a three-dimensional trace of the particle and fit the parameters of
the polynomial potential by performing the potential analysis as described in
Section 3.2.
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Figure 4.11: PSD of a particle trapped in the dark focus (red)
in comparison to background noise (grey).

4.4.3
Potential analysis

As discussed in Section 3.2, potential analysis can be used to calibrate
any conservative force that can confine a particle in an equilibrium point, being
a promising technique to calibrate the DFT.

Images of the trapped particle are captured by using a previously
calibrated CCD camera, the Image Camera discussed in Section 2.5 and shown
in Fig.4.1, at a rate of 15.0 frames/s. We extract the particle’s centroid and
axial coordinates using image processing techniques [53]. Resulting traces can
be seen in Fig. 4.12. We note these traces are not Gaussian distributed, as can
be directly verified by performing statistical hypothesis tests.
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Figure 4.12: Traces of the particle inside the DFT

We acquired a long-duration video of the experiment, from which we
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obtain a position probability density function (PDF). As a cross-check, we
compare the marginal PDFs of motion along the x and y directions with those
obtained from numerical simulations considering different values of the trap
NA. We ran several traces of the DFT as a function of NA and find the best
match through the minimum value of Kullback–Leibler (KL) divergence as
shown in Fig. 4.13. The average value between both directions points to the NA
interval between 0.44 − 0.47 as best describing the measured data. Note that
this interval agreed with the interval found in the PSD analysis, this confirms
an optimal interval between 0.46 − 0.47 for describing our experimental results.
We selected NA= 0.46 for its smaller KL value. The PDF was fitted assuming
P (ρ, z) ∝ exp (−V (ρ, z)/kBT ) where V (ρ, z) is the polynomial potential model
described in Eq. (4-1) and it is shown in Fig. 4.14a). This distribution allows
us to reconstruct the DFT potential at the trapped sphere’s centroid position,
obtained by taking the logarithm of the PDF, shown in Fig. 4.14b). A potential
depth of ≈ 100×kBT is found, evidencing stable trapping. The corresponding fit
parameters are shown in Table 1 for the experimental and numerical simulations.
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KL divergence
PSD analysis
Optimal NA 

Figure 4.13: Kullback-Leibler divergence D(Pexp||Psim) be-
tween simulation and experiment as functions of the NA. Area
marked in orange reveals the range where both distributions
are most similar.
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a) b)

Figure 4.14: Reconstructed potential. a) Fitted normalized
PDF of the centroid’s position. b) Reconstructed potential
landscape for centroid coordinate of a trapped particle in the
DFT.

Parameter Experiment Lorentz-Mie simulation
kz (N/m) (3.86 ± 0.06) × 10−7 (2.93 ± 0.79) × 10−7

kρz (N/m3) (8.81 ± 0.14) × 107 (8.84 ± 0.25) × 107

kρ (N/m3) (2.26 ± 0.07) × 108 (1.63 ± 0.17) × 108

Table 4.1: Reconstructed potential parameters in comparison
to numerical simulations of Lorentz-Mie theory. Error bars
are obtained by dividing the experimental and simulated data
into five sets and taking the standard deviation.

4.5
Discussion

In summary, we have implemented a stable structured dark focus optical
trap for dielectric microparticles immersed in a high refractive index medium. We
have shown stable trapping and isolation from surrounding objects by repulsive
optical forces, which induce a non-harmonic potential landscape. We also
study the optical potential both through the PSD and potential analysis, and
reconstruct the potential parameters in agreement with Lorentz-Mie numerical
simulation of the optical trap.

We expect the dark trap will find applications both in fundamental
and applied physics. As further discussed in Chapter 5, dark traps could be
extended to vacuum levitodynamics through the use of engineered nano and
microparticles [86], where the structured light beam could offer controlled or
even reduced photon scattering in coherent quantum experiments [87,88].

Finally, as also discussed in Chapter 5, dark tweezers can provide stable
trapping for organisms with greatly reduced laser heating, further extending the
optical manipulation toolbox for living matter avoiding laser damage thresholds
in living microorganisms [80].
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5
Outlook

In this work, we have explored the use of structured light beams in optical
tweezers. We have explored both the regime of bright tweezers, where the
refractive index of the trapped object is higher than that of its surrounding
medium, and the novel regime of dark tweezers, where the refractive index of the
medium is higher than that of the object. We presented different experiments
employing structured light in both cases, and notably we implemented, to the
best of our knowledge, the fist stable dark optical tweezer for micron-sized
particles. We have introduced novel methods for characterizing important
parameters of the trapping beam as well as the optical potential. From where
we stand, several future research directions can be envisioned. We briefly discuss
some of these future ideas.

Dark focus tweezer in vacuum

Ground state cooling has been recently achieved in experiments based
on optimal feedback control [23] and coherent scattering [22]. Both these
routes to the ground state require operation at high vacuum pressures (below
10−8 mbar) to reduce damping rates. At this level of environmental isolation,
the major sources of decoherence come from photon recoil heating induced
by trapping Gaussian beam [87–89] and the black body temperature of the
levitated object. Dark tweezers can present an interesting solution to the
latter issue by reducing the direct incidence of photons to the trapped particle
and hence its bulk temperature. To apply dark focus tweezers to nano- and
microparticles, however, we need to overcome the fact that the refractive index
of the vacuum is nm = 1.

An interesting possibility is to use nanoparticles doped with atoms that
have a transition near the frequency of the trapping beam [90]. In that case, if
the trap is blue-detuned with respect to the transition, the atoms will acquire
a negative polarizability and provided the doping level is high enough, the
nanosphere will be subject to a repulsive force. Decompose the total dipole of
such a system according to,
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p̃ = p̃np + p̃oc = α̃np(ω)E + α̃oc(ω)E, (5-1)
where the α̃np is the complex polarizability of the nanoparticle’s bulk material,
i.e. SiO2, and α̃oc is the polarizability associated with an ensemble of optical
centers (the atoms) confined in the same volume V . Trapping in a dark tweezer
requires the effects assosiated to α̃oc to be larger than those of α̃np. It has been
shown that the polarizability of rare-earth ions doped nanocrystals can assume
negative values for a blue-detuned wavelength near the optical transition at
972 nm [91]. Moreover, experiments with NV centers presented an increase
in the overall trapping force due to collective effects even in a noisy liquid
environment [92]. For a blue-detuned laser and assuming the optical centers’
effect can be higher than the nanocrystal’s bulk, it is then possible to trap
objects in a dark tweezer in vacuum.

Optical binding

Beyond the arbitrary potentials that a phase modulator can induce in
a single particle, one can engineer an optical beam with multiple equilibrium
points in order to have arrays of optical tweezers [60,93]. The emerging field
of simultaneous trapping of multiple particles promises to lead optomechanics
to a new level by exploring not only the light-matter interaction but the
light-induced matter-matter interactions in well-isolated systems [94].

A step towards controllable optical interactions between nanoparticles has
been recently demonstrated [95], where coherent scattering interaction between
levitated nanoparticles was measured as a function of different controllable
parameters such as distance, the tweezer’s relative phase and polarization.
Structured light tweezers add possibilities to this kind of experiment, making
it possible to control the scattering of light by mode engineering both in the
Rayleigh and intermediate regime.

Biophysics

Cell membranes are responsible for a series of vital processes ranging from
self-division (as in cytokinesis) to absorbing and expelling motions (endocytosis
and exocytosis). It also plays a crucial role in motility, signal sensing and the
primordial function of protecting the cell’s internal environment. Despite being
well-known, these processes have no complete mechanical description, even
though it is widely believed that acquiring such understanding might lead to
valuable insights into the functioning of living beings [13,16, 96]. The first step
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in this direction is to study the membrane’s response to external forces. Optical
tweezers are a particularly suitable tool to study the physical properties of
single microorganisms since it is capable of probing forces at femtonewtons in
a range of nano and micron scales

Although a variety of different experiments have been done with cell
membranes in the last years [12–15], the data reported in the literature for
mechanical properties of living organisms differ by one to three orders of
magnitude due to several error sources from experimental issues, such as cell
culture conditions or the natural variability of these cells, to imprecise theoretical
models. Moreover, a Gaussian optical tweezer induces a high energy density
into the microorganisms due to the direct interaction with the highly focused
laser beam which can damage the microorganisms during the application and
even modify the results of the experiment [80]. A possible approach is to use
dark tweezers to confine the target in a region with greatly reduced incidence of
light. Assuming a living cell has a refractive index within the range 1.36 − 1.39
[77], we should find a non-toxic medium such that nm > 1.39. Being highly
water-soluble, Iodixanol has been reported as a compound that can tune the
refractive index of water to 1.43 without harming the specimens [97]. It would
be possible to analyze the motion of the microorganisms with the potential
analysis method discussed in Chapter 3 and 4. Furthermore, one could change
the dark focus dimensions to study its dynamics or even the cytokinesis process
under different levels of optical stress.

Other than optically trapping living cells and measuring their mechanical
properties, one can use gradient forces to guide neuronal growth in vitro [79]. For
a suitable laser power, it was shown that a lamellipodia - membrane protrusions
on the front edge of a motile cell, such as neurons and immune cells - has an
enhancing growth into the beam focus, presenting opportunities to control a
natural biological process with a simple technique that does not involve any
chemical compound or external interactions

We may extend this idea by using structured light beams. Two initially
separated neurons can be guided to an intersection point via an engineered
beam where they naturally form synapses that can be seen in a high-resolution
microscope, as implemented in Chapter 3. Moreover, the fact that neurons
grown in a bottom of a thick coverslip suggests the use of external electrodes
[98,99] to measure their emitted signals and hence demonstrate the formation
of synapses. The idea of guiding multiple neurons is a first step towards human-
controlled neuronal structures that, as a long-term objective, can be applied in
nerve repairs of in vivo experiments [79].
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