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Abstract

Loachamin Ordonez, Gustavo Alejandro; Göbel Burlamaqui de
Mello, Carla (Advisor). Amplitude analysis of the D+

s →
K−K+K+ decay using the LHCb run 2 data. Rio de Janeiro,
2023. 87p. Dissertação de Mestrado – Departamento de Fisica,
Pontifícia Universidade Católica do Rio de Janeiro.

Despite of being considered a successful theory in the field of fundamen-
tal particles and interactions, the Standard Model is considered incomplete
because it still leaves a number of open questions. In order to address some of
these, it is necessary to study physical processes such as particle decays. In par-
ticular, the decays of heavy hadrons such as D and B mesons can be sensitive
to physics beyond the Standard Model, such as new sources of charge-parity
violation and new interactions. Nevertheless, at masses at the few GeV range,
where perturbative calculations of quantum chromodynamics are limited, phe-
nomenological models are needed to describe their hadronic decays.

In this dissertation, a study of the 3-body decay dynamics of the
D+
s → K−K+K+ channel is presented for the first time and uses two

phenomenological approaches to describe the decay amplitude: the Isobar
Model and the Quasi-Model Independent Partial Wave Analysis (QMIPWA).
The samples used corresponds to the data collected in Run 2 of the LHCb
experiment (between the years 2016-2018) with proton-proton collisions at a
center-of-mass energy of 13 TeV.

The analysis is performed after a selection process to reduce background,
leading to a final sample of about 100 thousand decays. To perform the
amplitude analysis fit to the Dalitz plot of the decay, the remaining background
and the efficiency across the Dalitz plot are parametrized. In the case of the
Isobar Model, the results obtained show a dominance of the φ(1020) resonance
and a composition of scalar resonances, f0(980) as the most clear one, being
formed as intermediate states, and a small but not negligible contribution of
spin-2 resonances. The Isobar Model offers a qualitative description of the
decay dynamics but does not provide a good quality fit, even when a variety
of possible intermediate states are added to the amplitude model. On the
other hand, the QMIPWA as a tool to describe the scalar sector revealed itself
difficult for the region of K−K+ mass above 1.3 GeV and sensitive to the
higher-spin resonances added to the model, making it difficult and less reliable
to interpret the results obtained. Even with the limitations found through
both models, the analysis presented here represent an important step towards
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the understanding of the dynamics of this decay, opening the path to further
studies with higher statistics in run 3 of LHCb.

Keywords
Amplitude Analysis; LHCb; Particle Decay; Particle Physics; Isobar

Model; QMIPW.
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Resumo

Loachamin Ordonez, Gustavo Alejandro; Göbel Burlamaqui de
Mello, Carla. Análise de amplitudes do decaimento D+

s →
K−K+K+ usando dados do run 2 do LHCb. Rio de Janeiro,
2023. 87p. Dissertação de Mestrado – Departamento de Fisica,
Pontifícia Universidade Católica do Rio de Janeiro.

Apesar de ser considerada uma teoria de sucesso no campo das partículas
e interações fundamentais, o Modelo Padrão é considerado incompleto porque
ainda deixa uma série de questões em aberto. Para abordar algumas delas, é
necessário estudar processos tais como decaimento de partículas. Em partic-
ular, os decaimentos de hádrons pesados, como os mésons D e B, podem ser
sensíveis à física além do Modelo Padrão, como novas fontes de violação de
carga-paridade e novas interações. No entanto, com massas na faixa de poucos
GeV, onde os cálculos perturbativos da cromodinâmica quântica são limita-
dos, modelos fenomenológicos são necessários para descrever seus decaimentos
hadrônicos. Nesta dissertação, um estudo da dinâmica de decaimento de 3
corpos do canal D+

s → K−K+K+ é apresentado pela primeira vez e utiliza
duas abordagens fenomenológicas para descrever a amplitude do decaimento:
o Modelo Isobárico e a chamada Quasi-Model Independent Partial Wave Anal-
ysis (QMIPWA). As amostras utilizadas correspondem aos dados coletados na
run 2 do experimento LHCb (entre os anos 2016-2018) com colisões próton-
próton a uma energia de centro de massa de 13 TeV. A análise é realizada após
um processo de seleção para reduzir o background, levando a uma amostra fi-
nal com cerca de 100 mil decaimentos. Para realizar a análise de amplitudes
no Dalitz plot do decaimento, o background remanescente e a eficiência ao
longo do gráfico de Dalitz são parametrizados. No caso em que a amplitude de
decaimento é descrita pelo Modelo Isobárico, os resultados obtidos mostram
uma dominância da ressonância φ(1020) e uma composição de ressonâncias es-
calares, f0(980) como a mais clara, sendo formada como estados intermediários,
e uma pequena mas não desprezível contribuição das ressonâncias de spin-2. O
Modelo Isobárico oferece uma descrição qualitativa da dinâmica de decaimento,
mas não fornece um ajuste de boa qualidade, mesmo quando uma variedade
de possíveis estados intermediários são adicionados ao modelo de amplitude.
Por outro lado, o QMIPWA como ferramenta para descrever o setor escalar
revelou-se difícil para a região de massa K−K+ acima de 1.3 GeV e sensível às
ressonâncias de spin mais alto adicionadas ao modelo, tornando difícil e menos
confiável a interpretação dos resultados obtidos. Ainda com as limitações en-
contradas nos dois modelos, a análise apresentada aqui representa um passo
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importante para o entendimento da dinâmica deste decaimento, abrindo cam-
inho para estudos com maior estatística no run 3 do LHCb.

Palavras-chave
Analise de amplitudes; LHCb; Decaimento; Física de Partículas;

Modelo Isobarico; QMIPWA.
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1
Introduction

The Standard Model of Particle Physics (SM) is considered to be a suc-
cessful theory because its predictions for particle interactions positively agree
with experimental evidence. However, it is also considered an incomplete the-
ory since it fails to provide explanations to some physical phenomena like the
nature of dark matter, the barionic-antibarionic asymmetry in the universe,
the sources of Charge-Parity (CP) violation and the neutrino masses. Exper-
iments worldwide search for evidence to resolve these issues by performing
a huge range of measurements in different subfields of Particle Physics. The
CERN complex, for example, hosts some of those experiments using a large
accelerator complex and a huge network with several projects involving pro-
fessionals around the world. The Large Hadron Collider (LHC) is the largest
accelerator of the world and the four main experiments of CERN are located
around its ring: ATLAS, ALICE, CMS and LHCb. In particular, the LHCb is
dedicated to the study of heavy hadrons containing beauty and charm quarks.
These projects work in the measurement of CP violation, mixing and the
study of the dynamical structure of decays involving these particles (mesons
B and D). The decays of these hadrons may be sensitive to observations of
new physics. However, the description of the dynamics of these particle decays
is challenging since the perturbative methods used for Quantum Chromody-
namics (the Standard Model theory of strong interactions) cannot be applied
to the theoretically describe the amplitude of these decays. At low energies,
many of these decay channels have been widely investigated previously us-
ing phenomenological models like the Isobar Model [33]. In this context, we
present the amplitude analysis of the D+

s → K−K+K+ decay channel using
the Isobar model and an attempt to use the Quasi Model Independent Partial
Wave Analysis (QMIPWA) in this dissertation. The dynamical structure of
the phase space of this decay has not been studied to date. This decay channel
is important because the results obtained here might be used in future stud-
ies and they might provide more information about hadronic processes at low
energies. This dissertation is organized as follows: in chapter 2, a brief descrip-
tion of the Standard Model as a field theory is presented, later we present a
description of particle dynamics including the kinematics of a three-body de-
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Chapter 1. Introduction 18

cay, the Dalitz plot formalism and a description of the two phenomenological
models used in this work: the Isobar Model and the Quasi-Model Independent
Partial Wave Analysis (QMIPWA). Chapter 3 is dedicated to the description
of the LHCb experiment with a brief introduction to the LHCb components:
the tracking system, calorimeters, particle idetification system, muon cham-
bers and the trigger levels. In chapter 4, a summary of the data selection
process is presented: a definition for the kinematic variables measured; the fi-
nal trigger, pre-selection and selection requirements on the variables used to
deal with the combinatorial (association of random tracks) and specifc back-
grounds (cross-feed, clone tracks and high asymmetry). This data selection was
already performed by Carolina Bolognani in studies of charge-parity CP vio-
lation using this decay channel [27]. However, the last requirement to reduce
the combinatorial background (BDT requirement) was adjusted in this work
to obtain a purity of 90% in the final sample. In chapter 5, the methodology
of the fitting procedure is presented along with a description of the back-
ground parametrization and the efficiency map construction. Chapter 6 and
7 contain the final results for the fit and the conclusions of this study. The
Isobar Model fits show a qualitative description of the phase-space of this de-
cay which is dominated by the φ(1020) and a S-wave structure (which requires
further studies to obtain a satisfactory parametrization). On the other hand,
the QMIPWA turned out to be a limited model to describe this decay. The
results using these models are reliable up to 1.3 GeV in the invariant mass
squared K−K+ due to the low data points found beyond this value.
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2
Theory

The main goal of this dissertation is to describe the structure of the phase
space of the decay D+

s → K−K+K+ using the LHCb Run 2 data collected
between the years 2016-2018. An attempt for the description of the amplitude
(the Lorentz invariant matrix element) of this decay is performed using two
phenomenological models: the Isobar Model and the Quasi-Model Independent
Partial Wave Analysis (QMIPWA). In this context, it is firstly required a basic
understanding of the theoretical foundations of an amplitude analysis. For this
reason, a brief description of the theory behind amplitude analysis of particle
decays is provided in this chapter including the foundations of the Standard
Model, the kinematics of three-body decays and the theoretical description of
the phenomenological models used.

2.1
The Standard Model of Particle Physics

The Standard Model (SM) is a theory that successfully provides explana-
tion to the fundamental interactions of nature and to most known phenomena
in particle physics [2]. In the SM, the fundamental interactions (except for
gravity which is still not included in this theory): electromagnetic, weak and
strong are explained as the exchange of Gauge Bosons between the fundamental
fermions (and their respective antiparticles [3]). There exist twelve fundamen-
tal fermions divided into two equal groups: leptons and quarks. The group
of leptons include the electron and two heavier electron-like particles (muon
and tau), all of them with their corresponding neutrinos. On the other hand,
in the quark sector, there exist three up-type quarks which posses the same
charge and three down-type quarks (also with the same charge), all of them
with different mass. The fundamental fermions of the SM together with the
Gauge Bosons are shown in Fig. 2.1. Mathematically, the SM is a renormaliz-
able non-Abelian (non-commutative) field theory which contains information
about the fundamental interactions, has spontaneous symmetry breaking [3],
[4] and it is based on the algebra of the group SU(3)⊗ SU(2)L ⊗ U(1)Y . The
SU(3) represents the algebra of Quantum Chromodynamics (QCD), the theory
of strong interactions, where the mediators of the interaction are eight mass-
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Chapter 2. Theory 20

Figure 2.1: Particles of the Standard Model. The twelve fundamental fermions
are divided into two groups: leptons and quarks. The Gauge bosons responsible
for each fundamental interaction are shown on the right.

less gluons carrying color charge. The strong interaction is responsible for the
existence (through the mechanism of confinement) of bound states of quarks
called hadrons and there exists two kinds of hadrons: mesons (quark-antiquark
bound states) and baryons (triple-quark bound states)1. This information is
contained in the Lagrangian of QCD, which is given by the expression:

L = −1
4

8∑
A=1

FAµνFA
µν +

nf∑
j=1

q̄j(i /D −mj)qj (2-1)

where FA
µν = ∂µg

A
ν −∂νgAµ −eSCABCgBµ gCν , gAν are the gluon fields and qj are the

quark fields. The physical allowed vertices of QCD include quark-gluon-quark
vertex (represented by the second sum in the Lagrangian) and triple, quartic
gluon self-interaction vertices (represented by the first sum in the Lagrangian).

The SU(2)L ⊗ U(1)Y represents the theory of electroweak interactions.
The electroweak Langragian can be split into two components: L = Lsymm +
LHiggs where Lsymm is known as the Yang-Mills Lagrangian. The Yang-Mills
Lagrangian is given by:

Lsymm = −1
4

3∑
A=1

FAµνFA
µν −

1
4BµνB

µν + ψ̄Liγ
µDµψL + ψ̄Riγ

µDµψR, (2-2)

where Bµν = ∂µBν − ∂νBµ , FA
µν = ∂µW

A
ν − ∂νWA

µ − gεABCWB
µ W

C
ν , Bµ is the

1Color confinement allows the existence of bound states with higher number of quarks
namely tetra and pentaquarks. A constituent quark model was first proposed in [34] and
many of these states have already been observed by different collaborations [35] , for example
the observation of the X(3872) firstly performed by the Belle collaboration.
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gauge field associated with U(1)Y and WA
µ are the gauge fields associated with

the SU(2)L generators. The fermion fields are described through the chiral
left-hand and right-hand components defined as:

ψL,R = [(1∓ γ5)/2]ψ
ψ̄L,R = ψ̄[(1± γ5)/2] (2-3)

where ψ are the fermion fields and P± = (1 ± γ5)/2 are the chiral projection
operators. The masses of fermions are introduced together with the masses
of the mediators through symmetry breaking in the Higgs component of the
electroweak Lagrangian. The covariant derivative in Eq. 2-2 can be explicitly
written as:

DµψL,R = [∂µ + ig
3∑

A=1
tAL,RW

A
µ + ig′

1
2YL,RBµ]ψL,R (2-4)

where tAL,R and 1
2YL,R are the generators of the SU(2) and U(1) symmetries

respectively. Then, the charged current coupling (the fermion-W±-fermion
vertex) can be written as:

Vψ̄ψW = gψ̄γµ[(t+L/
√

2)(1− γ5)/2 + t+R/
√

2)(1 + γ5)/2]ψW−
µ + h.c. (2-5)

with t± = t1 ± it2 and W± = (W 1 ± iW 2)/
√

2. In the case of the neutral
currents:

Aµ = cos θWBµ + sin θWW 3
µ

Zµ = − sin θWBµ + cos θWW 3
µ , (2-6)

the physical mediators of the electroweak interactions (photon, W± and Z0)
are a combination of the fields coming from the SU(2)L and U(1)Y . After
symmetry breaking of electroweak interactions, the physically allowed vertices
of the weak interactions including charged mediators (W±) involve change of
particle type (called flavour) at each of these vertices. On the other hand, the
interactions involving neutral-charged mediators: photons and Z0 do not allow
flavour change. The study of flavour changing interactions is called flavour
physics.

2.1.1
Flavour physics

From the discussion above, it is clear that strong and electromagnetic
interactions are flavour unchanging, meaning that the flavour is conserved
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Figure 2.2: Example of vertices allowed in weak interactions.

at each vertex of Feymann diagrams involving these mediators; this is also
true for the neutral current (NC) of weak interactions which involve the
exchange of Z0 bosons. On the other hand, the charged current of the weak
interaction mediated by the W± bosons introduces flavour change at every
vertex associated to these mediators as shown in Fig. 2.2. In the case of leptons,
there exists only coupling between leptons and their corresponding neutrinos;
in addition, the coupling strength is the same for all three generations of
leptons (this is known as lepton universality). In the case of quarks, there
exists generation change and the coupling strength is not the same for vertices
in Feymann diagrams involving different particles due to the difference in
quark mass (as mentioned above, all quarks have different mass and only
the mass values of the u and d quarks are very close). This mass difference
is translated into off-diagonal terms in the mass matrices of the Yukawa
Lagrangian. However, these matrices can be diagonalized in such way that
we obtain:

LY = −
(

1 + H

v

)
{d̄Mdd+ ūMuu+ l̄Mll}, (2-7)

where the matricesMi are diagonal and we can define the mass eigenstates in
terms of the weak eigenstates:

dL =Sdd
′

L uL = Suu
′

L lL = Sll
′

L

dR =SdUdd
′

R uR = SuUuu
′

R lR = SlUll
′

R, (2-8)

here Ui and Si are unitary matrices that are used for the diagonalization
of the mass matrix. The neutral currents given by f̄L,RfL,R = f̄

′

L,Rf
′

L,R do
not change flavour since this part of the SU(2)L ⊗ U(1)Y Lagrangian does
not change when mass eigenstates are used. However, ū′Ld

′

L = ūLSuS†ddL =
ūLVCKMdL so a unitary mixing matrix in the quark charged-current sector
appears when the Lagrangian is written in terms of the mass eigenstates [16]:

LCC = g

2
√

2

W †
µ

∑
ij

ūiγµ(1− γ5)VCKM
ij dj

+ h.c.

 (2-9)
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where V is known as the Cabibbo–Kobayashi–Maskawa (CKM) matrix which
is explicitly written as [17]:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4),

(2-10)

the parametrization on the right-hand side is known as the Wolfenstein
parametrization [18] with four independent parameters λ,A, ρ, η; since λ is
experimentally known to be small, only the first term can be kept from the
expansion. Transitions which involve only diagonal terms of the matrix are
called Cabbibo-favoured, when one off-diagonal term is involved the transition is
known as Cabbibo-suppressed and if both terms are off-diagonal, the transition
is known as doubly Cabbibo-suppressed.

2.2
The Ds → K−K+K+ decay

The focus of this work is the description of the Cabibbo-supressed decay
channel D+

s → K−K+K+ which undergoes a transition of the charm quark
c→ ss̄u and mainly proceeds in four types of topologies: annhiliation, tree-level
with the internal/external emission of a W boson and the penguin diagram.
These topologies are shown in Fig. 2.3. The D+

s decay amplitude is suppressed
with respect to the tree-level diagram which is proportional to VcsV ∗us of order
O(λ) in Wolfenstein parametrisation given in Eq.2-10.

a. b.

c. d.

Figure 2.3: Topologies of the Ds → K−K+K+: a. the annhiliation diagram
of tree-level order, b. the external and c. internal emission of a W and d. the
penguin diagram.

Provided that quarks are always present in bound states, weak interac-
tions involving hadrons are always tangled to strong interactions. For this rea-
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son, the description of these processes is generally speaking non-trivial within
the SM however, they can still be simplified using different mechanisms.

For example in leptonic decays (like π− → µν̄), the bound-state effects
can be simply reduced to a constant. On the other hand, the description
of semi-leptonic decays (like K0 → π+µν̄) requires the use of form factors.
However in the case of non-leptonic decays, the description is more involved
given the complicated structures formed in Feynman diagrams [35]. Therefore,
the dynamics of non-leptonic decays cannot be described using first principles.
Given that the decay channel studied in this dissertation is non-leptonic,
phenomenological models are required in an attempt to provide a description
of the amplitude of this decay.

2.2.1
Kinematics of three-body decays

In order to begin with the description of the amplitude of the decay
channelD+

s → K−K+K+, theoretical foundations on the kinematics of particle
decays have to be introduced before presenting the phenomenological models
used in this study. Particularly, we talk about the kinematics of three-body
decays (one mother, three daughter particles).

Figure 2.4: Schematic of a three body decay. [24]

The amplitude of a decay is theoretically related to the decay rate for
that process. The decay rate is defined as the number of events per unit
time of a given decay. In general, particles can decay to an arbitrary number
of daughters, provided that energy-momentum conservation is satisfied. For
multi-body decays the theoretical expression for the decay rate is given by the
following equation:

Γ ∝
∫
|M|2δ4(P µ −

N∑
i=1

pµi )
N∏
i=1

δ(p2
i −m2

i )d4pµi , (2-11)

where pµi are the four-momenta of the daughter particles involved in the decay,
P µ is the four-momentum of the mother particle andM is the amplitude which
contains the information about the dynamical structure of the decay. The

DBD
PUC-Rio - Certificação Digital Nº 2112885/CA



Chapter 2. Theory 25

expression given in Eq. 2-11 is general for any number of daughter particles,
and it can be reduced to:

Γ ∝
∫
|M|2δ4(P µ − pµ1 − p

µ
2 − p

µ
3)δ(p2

1 −m2
1)δ(p2

2 −m2
2)δ(p2

3 −m2
3)d4pµ1d

4pµ2d
4pµ3

(2-12)

for a three-body decay of the form M → P1P2P3 (this decay is schematically
shown in Fig. 2.4; in the case of the decay presented in this dissertation:
D+
s → K−(P1)K+(P2)K+(P3)). Additionally, the momentum and energy

dependence in Eqs. 2-11 and 2-12 can be replaced by a dependence on Lorentz
invariant quantities. The Lorentz invariant expressions used in this study are
the invariant masses squared which definition is given in Eq. 2-13.

s12 = (pµ1 + pµ2)2 = (P µ − pµ3)2

s13 = (pµ1 + pµ3)2 = (P µ − pµ2)2

s23 = (pµ2 + pµ3)2 = (P µ − pµ1)2 (2-13)

These invariant masses squared possess many algebraic properties, one that is
relevant for this analysis is given below in Eq. 2-14:

s12 + s13 + s23 = M2 +m2
1 +m2

2 +m2
3 (2-14)

where M and mi are the masses of the mother and daughter particles
respectively. Replacing all the momentum and energy variables to invariant
masses squared reduces the expression in Eq. 2-12 to:

Γ
ds12ds13

= 1
(2π)3

1
32M3 |M|

2. (2-15)

In Eq. 2-15, it can be seen that the differential decay rate is described by only
2 variables and it is proportional to the square of the amplitude. In general, a
three-body decay has twelve degrees of freedom (energy and three-momentum
of the daughter particles involved) which can be reduced to 9 given the energy-
momentum relations, then they can be reduced to 5 using energy-momentum
conservation and provided that the final state particles are scalar (spin-0), a
rotational invariance is introduced and the degrees of freedom are reduced to
2. In this study, the variables chosen are s12 and s13 since intermediate states
are expected to appear in the R→ K−K+ decay channel.

The 2D-phase space described by these two variables is known as a
Dalitz plot (DP). Given that the differential decay rate is proportional to
the amplitude squared, the density of events in a DP describes the amplitude
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of that decay. Therefore, the dynamical structure of a three-body decay can
be qualitatively/quantitatively analyzed in a DP. The kinematic limits of the
DP are given by the maximum and minimum physical values of the invariant
masses squared. To obtain the kinematic limits, we start from the definition of
the invariant masses squared given in Eq 2-13 and make some algebraic work
in terms of momentum and energy:

s12 = m2
1 +m2

2 + 2pµ1p2µ

s12 = m2
1 +m2

2 + 2(E1E2 − p1 · p2)
s12 = m2

1 +m2
2 + 2(E1E2 − |p1||p2| cos θ12), (2-16)

for any given values of energy and momentum the last expression clearly
minimizes for cos θ12 = 1 (when particles 1 and 2 travel in the same direction)
and maximizes for cos θ12 = −1 (when particles 1 and 2 travel in opposite
directions). In this context, we can define a reference frame Rij where pi+pj =
0 for a pair of daughter particles. In the case of the frame R12, the momentum
and energy of the daughter particles in terms of the invariant mass s12 are
given by:

E1 = s12 +m2
1 −m2

2
2√s12

E2 = s12 +m2
2 −m2

1
2√s12

E3 =M
2 − s12 −m2

3
2√s12

(2-17)

and making use of the relation E2
i = p2

i +m2
i , we can also find the expressions

for the magnitude of the three-momenta of the particles:

|p1| = |p2| =
λ1/2(s12,m

2
2,m

2
1)

2√s12

|p3| =
λ1/2(M2, s12,m

2
3)

2√s12
(2-18)

where λ(x, y, z) = x2+y2+z2−2xy−2yz−2xz is known as the Källén function
[6]. Using these results, we can express the maximum and minimum values of
s13 in terms of s12 in the R12 reference frame which provides a boundary for
the Dalitz plot:
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s13 =m2
1 +m2

3 + 2pµ1p3µ

s
max/min
13 =m2

1 +m2
3 + 2(E1E3 ± |p1||p3|)

s
max/min
13 =m2

1 +m2
3 + 1

2s12
((s12 +m2

1 −m2
2)(M2 − s12 −m2

3)

± λ1/2(s12,m
2
2,m

2
1)λ1/2(M2, s12,m

2
3)). (2-19)

On the other hand, the absolute maximum and minimum values of the
invariant masses squared are given by conservation of energy and are shown
in the following expression:

(mi +mj)2 ≤ sij ≤ (M −mk)2 (2-20)

for 1 ≤ i, j, k ≤ 3 and i 6= j 6= k. In Fig. 2.5, an example of a Dalitz plot
constructed using s12 and s23 for a given three-body decay is shown. In the
decay channel presented in this work, all the daughters possess the same mass
so we may construct a "folded Dalitz" plot given that there exist no distinction
between particles 2 and 3. The folded Dalitz plot is only filled in the region
s13 > s12 and for data points s12 < s13, we mirror them in the allowed region
so that a point (s12, s13) becomes (s13, s12). The folded DP’s are not utilized
in this analysis (given that the fitting algorithm cannot deal with this kind of
Dalitz plots) however, their use should be employed in further research of this
decay channel. In this analysis, only symmetric Dalitz plots are used: DP’s in
which a pair, (s12, s13) is plotted as (s12, s13) and as (s13, s12), the same case
for a pair (s13, s12) and the entire DP phase space is filled (all the phase within
the DP boundaries).

2.3
The Isobar Model

As mentioned in the previous sub-section, the description of non-leptonic
decays represents a challenge within the Standard Model due to the compli-
cated structure of the strong interactions. For this reason, phenomenological
models to describe these decays have to be introduced. A common approach to
describe the amplitude of a three-body decay is the Isobar Model. In the Iso-
bar Model, the amplitude of a three-body decay is given by the coherent sum
of intermediate states’ amplitudes, which appear in the initial two-body inter-
mediate decay D+

s → RK+ and later the resonant state decays into the two
final products R→ K−K+, these intermediate states are known as resonances.
This is shown schematically in Fig.2.6.
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Figure 2.5: Dalitz plot example, the maximum and minimum values of the
Dalitz phase space are represented by vertical and horizontal lines. Image taken
from [17].

The parent particle may also decay directly into the final products and
this non-resonant amplitude (NR) is usually modelled as constant throughout
the entire phase space. Therefore, the Lorentz invariant matrix element is given
by:

M(s12, s13) = cNR +
∑
i

ciAi(s12, s13) (2-21)

where ci = aieiφi are complex coefficients that are to be determined in the
amplitude analysis. One of the coefficients, ci, should remain fixed in the fit
(amplitude and phase) to establish a reference for the rest of the coefficients.
Furthermore, the amplitudes Ai are given by the product of forms factors
called Blatt-Weisskopf factors (which accounts for the hadronic barrier effects
and depends on the spin of the resonance), an angular distribution (which
accounts for angular momentum distribution) and a lineshape representing
the propagator of the resonant. All of these components can be written
in terms of the DP variables which are usually chosen to be the invariant
squared masses where the resonances appear. In the case of the decay channel
D+ → K−(1)K+(2)K+(3), resonances should appear in the two-body decay
channel R→ K−K+ [7] which correspond to the Dalitz plot variables s12 and
s13 since the decay is symmetric. The expected contribution to the amplitude
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Figure 2.6: Schematics of three-body decay proceeding through an intermediate
state.

given by each resonant state is shown in the expression below:

Ai(s12, s13) = R(s12)× T(p,q)× F (|p|rPBW)× F (|q|rRBW), (2-22)

the amplitude is symmetric under s12 → s13 due to Bose-Einstein symmetriza-
tion which implies that Ai(s12, s13) = Ai(s13, s12) In Eq. 2-22, q, p are the
3-momenta of one of the resonant decay products and of the spectator particle
(the particle that is not involved in the channel associated to the resonant)
respectively, both of them calculated in the rest frame of the resonant. R(s12)
is the lineshape propagator that represents the phenomenological properties of
the resonance. T(p,q) is the angular distribution which depends on the spin
of the resonance and it is given by the Zemach tensor formalism [9] and F (z)
are the Blatt-Weisskopf factors [10] which account for the vertex effects.

2.3.1
Blatt-Weisskopf factors

The Blatt-Weisskopf barrier penetration form factors account for the
finite extent of quark bound states which limits the value of the angular
momentum. These factors are parametrized by the quantity z = |p|r where
r is the effective radius of the barrier. In the case of the parent decay,
rPBW = 5.0 GeV−1 and for the resonance rRBW = 1.5 GeV−1. The mathematical
expressions of these factors depend on the spin of the resonance, the equations
for resonances up to spin 2 are given below (in the amplitude analysis presented

DBD
PUC-Rio - Certificação Digital Nº 2112885/CA



Chapter 2. Theory 30

in this study, only resonant states up to spin 2 are used in the fitting models):

F (z)J=0 = 1

F (z)J=1 =
√

1
1 + z2

F (z)J=2 =
√

1
z4 + 3z2 + 9 (2-23)

2.3.2
Angular distributions

The angular distributions represent the effects of angular momentum in
the decays and are given by the Zemach tensor formalism [9]. Mathematically,
these distributions depend on the angle between the spectator particle and one
of the products of the resonance decay in the rest frame of the resonance (the
angle θ13 in our case). These distributions depend on the spin of the particle
and are summarized in Table 2.1 (up to resonances of spin 2).

Resonance Spin Angular Distribution
0 1
1 −2p · q
2 4

3 [3(p · q)2 − (|p||q|)2]

Table 2.1: Angular distributions used in the resonance amplitudes given by the
Zemach tensor formalism

2.3.3
Lineshapes

The lineshapes contain the phenomenological characteristics of the res-
onances. The most typical lineshape used to describe resonant states is the
Breit-Wigner distribution which is based on the study of the behavior of un-
stable particles [8]. The non-relavistic Breit-Wigner distribution is given by
the equation:

BW(E) ∝ 1
Γ2/4 + (E − E0)2 (2-24)
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In the case of relativistic particles, the relativistic Breit-Wigner is used; this
lineshape is given by the following expression [11]:

RBW(m) = 1
(m2

0 −m2)− im0Γ(m) , (2-25)

where m0 is the nominal mass of the resonance, m2 = sij is the invariant
mass squared of the resonance decaying to particles i and j, and Γ(m) is the
mass-dependent width of the resonance given by:

Γ(m) = Γ0

(
|q|
|q0|

)(2L+1) (
m0

m

)
F (z)
F (z0) . (2-26)

Another lineshape commonly used in the analysis of resonances close the
to threshold of the phase space of a two-body particle decay is the Flatté
distribution. This lineshape was first introduced to describe the a0(980) scalar
resonance in the πη invariant mass distribution near the KK̄ threshold [12].
In this analysis, the Flatté distribution is used to describe the scalar resonance
f0(980). The Flatté distribution is a modified version of the relativistic Breit-
Wigner distribution and it is given by the following expresion:

Fl(m) = 1
m2

0 −m2 − im0(g2
ππρππ + g2

KKρKK) . (2-27)

The constants gππ = 0.165 GeV and gKK = 4.21gππ [13] represent the
couplings of the f0(980) scalar to the final states π+π− andK+K− respectively.
The factors ρ are given by the following expresions:

ρππ = 2
3

√
1− 4m2

π±

m2 + 1
3

√
1− 4m2

π0

m2 (2-28)

ρKK = 1
2

√
1− 4m2

K±

m2 + 1
2

√
1− 4m2

K0

m2 (2-29)

. (2-30)

In Fig. A.1, the DP’s constructed using simulated samples with the Isobar
model are presented. These plots show the phase space of theD+

s → K−K+K+

decay, each one with a single resonant state allowed in the two-body decay
channel R → K−K+. The φ(1020) is well localized due to its small width
value and it presents a node characteristic of spin-1 resonances. The spin-1
ρ(1450) also presents a node and spreads over the entire phase-space of the
decay due to its relatively large width value. The spin-0 resonances, also known
as scalar, spread over the entire the phase-space of the decay except for the
f0(980) which is located and spreads close to the threshold. Finally, the two
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spin-2 resonances present two nodes.

2.4
Quasi Model Independent Partial Wave Analysis (QMIPWA)

The parametrization of the S-wave is a complicated task which is some-
times not well performed using the Isobar Model due to the difficulty presented
when trying to separate the lineshapes of resonances that are not well localized
(usually scalar resonances with large width values). The QMIPWA is an al-
ternative method to obtain a quasi-model independent parametrization of the
S-wave (scalar resonances) of a given decay while still describing the higher-
spin waves through the Isobar Model. In the QMIPWA, the S-wave is modelled
in different bins and later a cubic spline is performed to obtain the S-wave at
each point of the mass spectrum. The QMIPWA may provide a description for
other resonances that are not visible in a decay phase-space. This technique
was first used in [30]. In this quasi-model-independent, the amplitudes Ai for
high-spin resonances are given by Eq. 2-22, then the final amplitude is given
by:

A(s12, s13) = AS−wave +
∑

spin>0
ciAi(s12, s13) (2-31)

where the ci coefficients are to be found in the fit and the amplitude of the
S-wave is parametrized at each bin of the K+K− invariant mass spectrum by
the expression AkS−wave(mK+K−) = akeiφk . The S-wave is Bose-symmetrized
so in any given bins k in m12 and l in m13, the amplitude of the S-wave is
given by Ak,lS−wave(s12, s13) = AkS−wave(m12) + AlS−wave(m13). Since this model
relies on the assumption that the Isobar model well-describes the higher spin
resonances, any limitations of the Isobar Model to describe these resonances
may result in leakage to the S-wave. In this study, we present only a first
attempt to obtain a fit with the QMIPWA which might need improvements in
further research projects.
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3
The LHCb experiment

In this chapter, a description of the details of the LHCb experiment
including the set up of the equipment, instruments and data processing is
provided.

3.1
The Large Hadron Collider (LHC)

Figure 3.1: Schematic of the CERN accelerators and the Large Hadron Collider

The Large Hadron Collider is the largest synchrotron accelerator and
collider in the world located at the CERN laboratory (shown schematically in
Fig. 3.1), it consists of a 27-kilometer ring of superconducting magnets with
accelerating systems along the path. Two beams of high-energy protons trav-
elling at speeds close to the speed of light are collided inside the accelerator at
four main locations corresponding to the positions of the four main detectors:
ATLAS, ALICE, CMS and LHCb. The main goal of the experiments performed
at the LHC is to find Physics Beyond the Standard Model (BSM) by colliding
proton beams at an energy of 13 TeV and luminosity of L = 1032cm−2s−1

[1], which is reduced at the LHCb interaction point. Luminosity defined as
Nevent = Lσevent where Nevent is the number of events per second generated in
the collisions and σevent is the cross section of the event that is being studied.
The two high-energy beams of protons travel in opposite directions before they
collide.
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3.2
The LHCb experiment

The LHCb experiment is one of the main experiments at CERN. It
is designed to study heavy flavour physics, interactions involving the heavy
quarks c and b [19]. The main goal of the experiment is to search for evidence of
new physics through the study of heavy hadron decays including CP violation
and mixing [20].

3.2.1
The LHCb detector

The LHCb detector is a single-arm spectrometer with forward angular
coverage from approximately 10 mrad to 300 mrad in the bending plane and
to 250 mrad in the non-bending plane. This geometry is chosen given that high
energy b- and c- hadrons are produced in the same forward or backward cone.
A schematic of the detector is shown in Fig. 3.2, where we can appreciate the
different components of the detector: a tracking system, a dipole magnet, a
particle identification system, calorimeters and muon chambers.

Figure 3.2: Side-view of the LHCb detector. The tracking stations T1-T3 are
shown as well as the calorimeters ECAL, HCAL, the magnet, muon chambers
M1-M5 and the RICH stations [22].

3.2.2
Tracking system

The tracking system consists of the vertex locator system (VELO) and
four planar tracking stations: the Tracker Turicensis (TT) which is located
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upstream of the dipole magnet and T1-T3 located downstream of the magnet.
VELO is designed to provide precise measurements of the track coordinates
close to the interaction region [20] which are used to identify and reconstruct
primary and secondary vertices of charm-hadrons, measure the lifetime of
these hadrons and the provide measurements of the impact parameter of tag
particles. It detects particles with a pseudorapidity in the range 1.6 < η < 4.9
which emerge from primary vertices such that |z| < 10.6cm. The VELO is
constructed using a series of silicon modules, each one provides values r and
φ for the position. The data obtained at VELO is used by the TELL1 data
processing boards which utilize a set of algorithms that process the raw data to
identify clusters which are later used in the trigger and the offline analysis. The
Tracker Turicensis is a tracking station with dimensions 150 cm x 130 cm which
is located upstream of the dipole magnet and uses silicon microstrip sensors
[21].On the other hand, the three T1-T3 stations are made of two components:
the Inner Tracker (IT) and the Outer tracker (OT). The ITs are located in
the center of the tracking stations and they also use silicon microstrip sensors.
Both of the TT and the IT’s have four detection layers, each layer consists
of seven silicon sensors accommodated into three readout sectors. The Outer
Tracker (OT) consist of two layers of straw-tube drift chambers, each tube has
an diameter of 4.9 mm filled with a gas mixture of Ar (70%), CO2 (28.5%)
and O2 (1.5%) with a resolution of 200µm.

Figure 3.3: Reconstructed track types from the LHCb tracking system. Image
taken from [31]

The information obtained by these components is later used to recon-
struct tracks. The reconstructed tracks can be classified as (depending on the
hits on the different components of the tracking system)[25]:

1. VELO tracks, tracks that pass only through the VELO.

2. Downstream tracks, tracks that cross the TT and the T1-T3.
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3. Upstream tracks, tracks crossing only the VELO and TT.

4. Long tracks, tracks that have information from all the tracking stations
(VELO, TT, T1-T3), therefore they possess the best resolution.

These tracks are schematically shown in Fig. 3.3

3.2.3
Magnet

The dipole magnet bends the trajectories of charged particles and their
the momenta are calculated using the radius of the trajectory. The magnetic
field generated is inhomogeneous and possesses an integrated bending power
of 4 Tm over a 10 m track. The magnet is located downstream of the VELO,
RICH1, and TT and it covers the forward acceptance of ±250 mrad vertically
and ±300 mrad horizontally. The polarity of this magnet can be inverted in
order to reduce systematic errors coming from the asymmetries generated by
the detector efficiency.

3.2.4
Particle Identification

Particle Identification of meson decay products is crucial in experiments.
The particle identification system is formed by two RICH (Ring-Imaging
Cherenkov System) detectors to cover the entire momentum range. The RICH
detectors use the Cherenkov radiation produced by the particles that cross
dielectric materials inside the detectors. The angle of the Cherenkov radiation
cone is related to the momentum of the particle that crosses the dielectric
material by the expression: cos(θch) = 1

nβ
where n is the refractive index of

the material; together with the reconstructed momentum obtained from the
tracking system, we can identify particles by their mass. Cherenkov angles for
different particles as function of momentum are shown in Fig. 3.4. The RICH
1 is used to identify low-momentum particles in the range ∼ 1 − 60 GeV/c
using aerogel and it is located upstream of the magnet between the VELO and
the Tracker Turicensis in the region 990 < z < 2165 mm. On the other hand,
the RICH 2 is used to cover the high-momentum range from ∼ 15 GeV/c up
to 100 GeV/c using CF4 radiator and it is located between the last tracking
station and the first muon chamber. Both of the RICH detectors have spherical
and flat mirrors used for focusing of the Cherenkov light. Additionally, Hybrid
Photon Detectors (HPDs) are included in the particle identification system to
detect the Cherenkov photons in the wavelength range 200-600 nm.
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Figure 3.4: Cherenkov angles for the different radiators as a function of
momentum (left). The measurement of the RICH performance in the data
for two radiators (right). Image taken from [26]

3.2.5
Calorimeters

The calorimeter system selects high tranverse energy hadron, electron
and photon candidates for the first trigger level (L0). It helps in the iden-
tification of electrons, photons and hadrons and measures their energies and
positions. These particles produce new particles with lower energy in cascades
which are called "showers" and the calorimeters can determine energy and po-
sitions of the particles based on the produced showers. The calorimeter system
consists of a pre-shower detector (PS) followed by scintillator pad detector
(SPD) which selects charged particles, the main electromagnetic calorimeter
(ECAL) and a hadron calorimeter (HCAL). The ECAL is chosen to be 25 radi-
ation lengths thick in order to fully contain showers generated by high energy
photons therefore achieving an optimal energy resolution. No such condition
applies to the HCAL so its thickness is chosen to be 5.6 radiation lengths due
to space limitations. The calorimeters receive scintillating light which is then
transmitted to a Photomultiplier by wavelength-shifting fibers. In the case of
the SPD and PS, the single fibers are read out using multi-anode photomul-
tiplier tubes and in the case of the ECAL and HCAL, the fibre bunches have
individual phototubes.

3.2.6
Muon Chambers

Muons play an important role in the measurements of CP asymmetry
and particle oscillations given that muons from semi-leptonic decays provide a
tag of the initial state flavour. The muon system provides information to the
Level-0 trigger and the High-Level trigger and it is composed by five stations
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(M1-M5) placed along the axis, the full system has 1380 chambers within
an area of 435 m2. M2-M5 are all located downstream of the calorimeters
and interconnected by iron-absorbers to avoid background hadrons. Station
M1 is located before the calorimeters so that the pT measurement in the
trigger is improved. M1-M3 have a high spatial resolution and they are used to
determine the direction of the track and to calculate the pT of a muon candidate
with a resolution of 20%. On the other hand, the stations M4-M5 have a
limited spatial resolution, therefore their purpose is mainly the identification
of penetrating particles. The muon trigger uses the muon reconstructed track
and the measurement of the pT which requires that the hits are alligned in all
the 5 stations.

3.2.7
Trigger

The LHC has a bunch-crossing frequency of about 40 MHz, where the
crossing frequency with interactions visible by the LHCb is about 10 MHz
(visible meaning that at least two charged particles are produced with sufficient
hits in the VELO and T1-T3 to allow the reconstruction of the event). This
frequency needs to be reduced to a few kHz by the trigger in order to allow
the storage of events which are relevant for further offline analysis. The trigger
consists of two levels: Level-0 (L0) and the High Level Trigger (HLT). The L0
trigger operates using custom made electronics and its purpose is to reduce
the 40 MHz beam crossing rate of the LHC to a lower rate of 1 MHz. This
is achieved by the selection of the particles with large tranverse momentum
(pT ) and large transverse energy (ET ). The L0-trigger is divided in three sub-
components: the pile-up system, the L0-calorimeter and L0-muon trigger; each
of these components is connected to a detector and to the L0 Decision Unit
(DU) which makes the final decision based on the information obtained from
the trigger systems. The pile-up system calculates the position of the primary
vertices along the beam-line which are used to distinguish crossings with single
and multiple interactions. The Calorimeter trigger selects high ET electrons,
photons or hadrons, then these clusters are identified as the different particles
based on the information provided by SPD, PS, ECAL and HCAL. Also, the
number of hits in the SPD are used to estimate the number of tracks. The
muon trigger uses the data from the five muons stations to form tracks and
it selects the two muons with the highest pT for each quadrant of the muon
detector. Then, a DU uses all the information obtained for these quantities and
delivers a final L0-trigger decision for each bunch crossing. The time between
a pp interaction and the arrival of the decision is set to 4 µs. The High Level
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Trigger (HLT) is performed with a C++ application which runs on every CPU
of the Event Filter Farm (EFF). The HLT is sub-divided in two stages: the
HLT1 and the HLT2. The purpose of the HLT1 is to reconstruct particles in
the VELO and the T-stations in order to reduce the rate to 30 kHz. This
is called L0 confirmation and it is done to allow full event reconstruction in
the HLT2. The HLT2 combines inclusive (partial reconstruction) and exclusive
(full reconstruction) algorithms to perform the selection of the final states.
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4
Data selection

The data selection of the LHCb Run 2 data obtained for the D+
s →

K−K+K+ decay channel was mostly performed by Carolina Bolognani in [27]
(this study was dedicated to the search of CP violation in the decay channels:
D+ → K−K+K+ and D+

s → K−K+K+). These selection requirements were
intended to reduce the background distribution of the data sample and for
this reason they were also needed in this study. Therefore, the data sample
after almost all selection requirements described in [27] was used in this work.
Later, futher analysis criteria was imposed to obtain a suitable sample for the
amplitude analysis presented in this dissertation. Final elements needed for the
fitting procedure were constructed and their description is given in Chapter 5.
A summarized description of the steps of the data selection is provided here
for completeness.

4.1
Variables

Figure 4.1: Topological variables involved in the particle decay.

The analysis of the decay D+
s → K+K+K− is performed using the

information provided by the detector, trigger and reconstruction software.
From the detector, a set of topological variables are obtained for each detected
event. A list of the variables used in the analysis is shown below:

– Mass (K+K+K−) → The combined invariant mass of the three kaon
candidates.
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– s12/13 → Invariant mass squared for the particle systems P1-P2 and P1-
P3.

– Primary Vertex (PV) → Position of the D+
s candidate production.

– Secondary Vertex (SV) → Position of the D+
s candidate decay.

– Flight distance (FD) → Distance between the primary and secondary
vertices.

– Impact parameter (IP) → Minimum distance between the primary
vertex and the particle’s trajectory.

– Momentum (p) → Magnitude of the particle’s reconstructed momen-
tum.

– Transverse momentum (pT ) → Component of the momentum per-
pendicular to the beam axis

– Lifetime → Decay time of the Ds candidate.

– Direction angle (DIRA)→ Cosine of the angle between the particle’s
momentum and the direction of the vector from PV to SV.

– Vertex χ2 → Quantitative measurement of the quality of the recon-
structed secondary vertex from the three particle tracks.

– IP χ2 → Quantitative measurement of the quality of the impact param-
eter.

– Track χ2 → Quantitative measurement of the quality of the recon-
structed track.

– Pseudorapidity (η) → Measurement of the angle of the particle track
relative to the beam axis, η = − ln[tan θ

2 ]

– PIDK→ Information on particle identification obtained from the RICH,
defined as the delta-log-likelihood of a particle being a kaon with respect
to the pion hypothesis PIDK= ∆ logL = LK

Lπ .

– ProbNNk → Probability value of a particle being a kaon obtained
from multi-variate analysis obtained from combining tracking and PID
information.

Experimentally the reconstructed mass of the D+
s candidates follows a distri-

bution coming from the momentum resolution of the reconstructed particle
tracks. For this reason, the Dalitz plot extends beyond the theoretical borders
defined in Eq. 2-19. In order to account for this problem, a package known
as DecayTree Fitter (DTF) is used; it changes the momentum of the parti-
cles within their corresponding uncertainties so that the D+

s candidates’ mass
values are forced into the Ds nominal mass, this ensures that the events fall
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Daughter requirements
χ2
Track/ dof < 3.0
pT [MeV] >250

χ2
IP wrt any PV > 4

PIDK = ∆ logLKπ > 5
Combination requirements

Mass [MeV] 1879 - 2059∑
pT [MeV] > 3000

pT at least one track [MeV] > 1000
pT at least two tracks [MeV] > 400

IP χ2 > 10 (at least one track)
IP χ2 > 4 (at least two tracks)

Mother requirements
Mass [MeV] 1879 - 2059

Track vertex χ2/dof <10
Lifetime [ps] > 0.2

acos(DIRA) [mrad] > 14.1

Table 4.1: HLT2 selection criteria

within their physical phase space, inside the theoretical Dalitz plot. In this
amplitude analysis, we construct the Dalitz plot using DTF invariant masses
squared.

4.2
Data samples

This analyis is performed using the data collected by the LHCb detector
during the time period 2016-2018 from proton-proton collisions at center of
mass energy

√
s = 13 TeV (which is known as Run 2). This data corresponds

to an integrated luminosity of 5.6 fb−1 and comes from the HLT2 trigger.
The HLT2 performs an online full reconstruction of events and data selection
requirements which are based on decay variables. These requirements shown
in Table 4.1. These requirements are chosen so that the Ds candidates’ mass
and the reconstructed mass lies within a range including the nominal mass of
the Ds meson; also a good vertex resolution is required, the momentum should
be consistent with the mass of the particles, the lifetime of the Ds is required
to be large and a good kaon identification is necessary.

4.3
Offline selection

After the trigger selection, offline selection requirements are needed due
to the still high background level in the samples. The first step in the analysis
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is to define further selection requirements to deal with the remaining sources of
background; this is done by using the data sample collected in 2016. The first
pre-selection is shown in Table 4.2. These are a set of kinematic requirements
including cuts on the mass spectrum and IP χ2 of the Ds candidate. To further
continue the analysis and to reduce the background from the sample, the
invariant mass distributionM of theDs is used, the invariant mass distribution
is shown in Fig. 4.2. As it can be seen in Fig. 4.2, the data sample has significant
contribution from different background sources. The kinematic variables given
in the data sample are used to reduce combinatorial background (background
coming from the association of three random tracks) and specific background
which comes from cross-feed with other channels, clone tracks and high charge
asymmetry regions arising from parts of the detector.

Figure 4.2: D+
s reconstructed mass distribution from the 2016 LHCb data

sample (left). The Dalitz plot obtained from this data set is shown on the
right. Image taken from [27]

In order to decide the selection criteria to deal with the combinatorial
background, the quantity known as the signal significance is introduced and
defined as:

Significance = S√
S +B

(4-1)

where S and B are the number of signal and background events respectively
inside the signal region of the mass distribution. In order to obtain S, the
background events are subtracted from the signal region using the background
region distribution (region outside the mass distribution peak) and assuming a
linear distribution of these events over the entire spectrum. The signal region is
defined as Rsignal = 1960<M<1980 [MeV] and the background region is defined
as Rbackground = (1920<M<1930) ∪ (2010<M<2020) [MeV].
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nSPDHits < 1000
1.5 < ηdaughters < 5
pdaughters < 100 GeV

IP χ2 <15
1905<M<2035 MeV

Table 4.2: Additional pre-selection requirements [27]

4.3.1
Specific Background sources: Charm background

A contribution to the specific background is the mis-identification of a
given daughter particle causing a cross-feed from other decay channels. By
looking at the mass distribution of the data sample shown in Fig. 4.2, we can
clearly see a contamination at the right sideband (the bump right next to
the signal peak) associated to the decay channel D+ → K−K+π+ resulting
from the mis-ID of a pion as a kaon. This contribution can be reduced by
imposing requirements on the PID variables: PIDK and ProbNNk. Both PIDK
and ProbNNk variables are tested in order to reduce the D+ peak in a mass
spectrum where the mass of the candidate is reconstructed by assigning the
pion mass to one of the daughters instead of the kaon mass. Since the mis-
identification can occur with either of the two K+, the same variable cuts are
applied on both of them. The KKπ invariant mass distributions are shown
for different values of PIDK requirement in Fig. 4.3, as it can be appreciated
the D+ → K−K+π+ contribution is significantly reduced for PIDK2,3>15. No
PID requirement is applied for the K− because there does not exist specific
backgrounds due to mis-ID of this kaon.

Figure 4.3: Invariant mass reconstructed by assigning the π to theK+ daughter
of lowest (left) and highest (right) momentum. The invariant mass is shown
for different values of PIDK requirements in different colors. Image taken from
[27]
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4.3.2
Specific background sources: Clones and charge asymmetries

Sometimes in the process of reconstruction, a single track can be wrongly
duplicated and a pair of kaons in the data sample might come from a single
track. This background contribution can be seen in the Dalitz plot of Fig. 4.2
as a concentration of events in the region next to the border that is closest to
the top-right corner (the high concentration of blue points in the right hand
side image of Fig. 4.2), region in which p2 = p3 and corresponding to the
lowest K+ momenta. In order to suppress the contributions coming from clone
tracks in the data sample, two variables: difTX23 and difY23 are defined. The
mathematical expressions for these variables are shown in Eq. 4-2.

difTX23 =
∣∣∣∣∣px2

pz2

− px3

pz3

∣∣∣∣∣ , difTY23 =
∣∣∣∣∣py2

pz2

− py3

pz3

∣∣∣∣∣ (4-2)

.
We can clearly see a peak in the distributions of these variables, shown

in Fig. 4.4 which comes from a contribution of the clones near zero. The cuts
applied to these variables were performed in such a way that the efficiency is
over 99% and a good significance is mantained. The applied requirements on
these variables are difTX23 > 2.3× 10−3, difTY23 > 2.3× 10−3.

Figure 4.4: difTX23 (left) and difTY23 (right) variable distributions. Image
taken from [27]

On the other hand, charge asymmetries are generated when low momen-
tum tracks are driven away from the detector. To reduce these contributions,
requirements are chosen in such a way that the high asymmetry regions are
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removed from the data sample, these requirements are

pz1,2,3 > 1 + 3.57×
∣∣∣px1,2,3

∣∣∣ [GeV]

pz1,2,3 > 4.25×
∣∣∣py1,2,3

∣∣∣ [GeV]

pz1,2 > 4[GeV]. (4-3)

These cuts have a relative efficiency of 96%.

4.3.3
Multi-variate analysis

The last step in the offline selection is the application of a multi-variate
analysis to select the signal candidates given that the remaining background
cannot be reduced by other specific requirements. This tool is designed in such
a way that a classifier is trained to distinguish between signal and background
distributions using several discriminatory variables of a test data sample; then
a value is assigned to the decision classifier variable for each event. This
response is later applied to a larger data sample where a decision variable
is obtained for each event and finally a requirement on this variable is imposed
to reduce the background contribution.

This technique is based on a Boosted Decision Tree (BDT) classifier
which uses a binary tree that makes decisions on one variable at a time. A
50k-event data sub-sample from the 2016 data set is used in the training and
testing phase. In order to perform the training, pure signal and background
samples should be given to the classifier for the analysis. These background
and signal distributions are obtained through the use of the sPlot method
implemented in the ROOT package. The sPlot technique is based on a fit of
the data sample using provided probability distribution functions (PDFs) for
the signal and background components of the invariant mass spectrum. Then,
the sPlot algorithm provides a weight for each event, weight that is associated
to the probability of that event being signal or background (based on the fit
performed using the RooFit package [23]).

In this case, the signal PDF is modelled as the sum of a Gaussian and
two Crystal Ball PDF’s (the two Crystal Balls are provided to account for the
tails on both sides of the signal peak) as shown in the equation below:

Psig(m) = fG ×G(µ, σG) + (1− fG)× [fCB × CB1(µ,R1σG, α1, N1)
+(1− fCB)× CB2(µ,R2σG, α2, N2)] (4-4)

where R1 and R2 are included so that the σ’s of the Crystal Balls are related
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to the σG of the Gaussian PDF; the fG and fCB are fractions related to the
Gaussian and one of the Crystall balls and they are included so that the total
PDF is normalized. The Crystal Ball distribution is given by the equation:

CB(m|µ, σ, α,N) = N

exp
(
− (m−µ)2

2σ2

)
, form−µ

σ
> −α

A ·
(
B − m−µ

σ

)−N
, form−µ

σ
≤ −α

(4-5)

where A =
(
N
|α|

)N
exp

(
− |α|

2

2

)
, B = N

|α| − |α|, N = 1
σ(C+D) , C =

N
|α|

1
N−1 exp

(
− |α|

2

2

)
and D =

√
π
2

(
1 + erf

(
|α|√

2

))
. On the other hand, the back-

ground’s PDF is chosen to be a third-order Bernstein polynomial. The expres-
sion for the background PDF is shown in Eq. 4-6.

Pbkg(m) =
3∑
i=0

ai

(
n

i

)
mi(1−m)n−i (4-6)

Figure 4.5: Invariant mass fit for a 50k event sub-sample after all selection
requirements. Image taken from [27].

From the 50k-event training sub-sample, half of the events is used for
actual training and the other half for testing. The invariant mass fit for
this subsample is shown in Fig. 4.5. Ten variables are used for the training
and testing, variables corresponding to the parent particle and symmetric
contributions from the daughters: IP, IP2

χ, Combination log IP, FD, log(FD2
χ),

DIRA, pT and p. The results are then applied in the remaining samples (data
sets collected in the time period 2016-2018) after applying all the offline
selection requirements and excluding the 50k-event used for the training.
Finally, a BDT value is assigned to every event in the sample. In the analysis
performed by Carolina Bolognani in [27], the BDT requirement was set to
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BDT>-0.02 obtaining a purity1 of 64.44±0.04% which was suitable for the
search of CP violation performed in [27].

Figure 4.6: Mass fit of the data sample including all data sets in Run 2
(2016-2018) and after all pre-selection and selection requirements. The top
figure shows the distribution before BDT cut and the bottom figure shows the
distribution after BDT>0.16 cut.

On the other hand, an amplitude analysis requires a sample with
higher purity to avoid large systematic uncertainty due to the background
parametrization. In order to achieve a higher purity in the sample, the re-
quirement on the BDT value had to be adjusted so that a purity of approx-
imately 90% in the final sample is obtained. The BDT requirement was set
to BDT>0.16 yielding a purity of 89.81± 0.05% as it can be seen in Fig. 4.6.
Table 4.3 summarizes all the offline selection performed in the data sample.

Using the standard deviation obtained in the fit, σG (the standard
deviation of the Gaussian PDF), we can introduce σeff (defined in Eq. 4-
7) which is used to obtain the signal region; region that is within 2σeff of the
mean µ also obtained in the fit. In the case of the fit shown in Fig. 4.6, the

1Purity is defined as Ns

Ns+Nb
where Ns and Nb are the number of signal and background

events respectively in the signal region. Additionally to this, the signal region is related
to the invariant mass fit shown in Fig. 4.6 such that µ − 2σeff ≤ M ≤ µ + 2σeff ,
1968.8 ≤M ≤ 1978.2 [MeV].
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Pre-
selection

nSPDHits < 1000
1.5 < ηproducts < 5
pdaughters < 100 GeV

IPχ2 < 15
1905 < M < 2035 MeV

ID requirements PIDK2,3 > 15
Clone requirements difTX23>2.3×10−3

Fiducial
requirements

pz1,2,3 > 1 + 3.57 ×|px1,2,3| GeV
pz1,2,3 > 4.25 ×|py1,2,3 | GeV

pz1,2 > 4 GeV
BDT requirement BDT>0.16

Table 4.3: Summary of pre-selection and selection requirements performed
in the entire data set (2016, 2017, 2018 samples) for the decay Ds →
K−K+K+[27].

signal region is (1959.37-1978.21) [MeV] with a σeff = 4.712±0.012 MeV where
the number of signal events inside the signal region is Nsig = 93310± 344.

σeff =
√
fGσ2

G + (1− fG)× (R1σG)2 + (1− fG)× (1− f1)× (R2σG)2 (4-7)

After performing all selection requirements, the Dalitz plot of the phase
space for the decay channel D+

s → K−K+K+ constructed using the selected
data sample is shown in Fig. 4.7. We can appreciate a clear contribution from
the φ(1020) resonance presented as a thin line close to the region sK−K+ ≈ 1.2
GeV2 together with its characteristic angular distribution. Also, a S-wave
structure is present close to the theoretical lower border of the Dalitz plot.
This S-wave interfers with the φ(1020) resonance distording the bands of the
φ(1020). Also, the DP is slightly populated at high invariant mass squared
which imposes a challenge in the fitting procedure.
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Figure 4.7: Dalitz Plot of the data sample corresponding to the decay D+
s →

K−K+K+. Two drawing options are used to better appreciate the resonant
structure.
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5
Fitting procedure, Efficiency map and Background studies

The goal of an amplitude analysis is to describe the dynamics (resonant
structure) of a decay using phenomenological models. In the ampliude analysis
described in this dissertation, the models used are the Isobar Model and
the Quasi-Model Independent Partial Wave Analysis (QMIPWA). The fitting
procedure in the analysis presented in this work was performed using the
GooFit package which is an interface that uses a minimisation algorithm called
MINUIT and Graphics Processing Unit (GPU) to evaluate the probability
density functions provided [14]. Aside from the selection performed to the
data set, it was also necessary to obtain a parametrization of the background
distribution in the signal region (the signal region contains approximately
10% of background events) and to account for the effects of the detector
in the structure of the Dalitz plot (efficiency). The effects of the detector
are accounted by the construction of an efficiency map represented by a 2D
histogram. On the other hand, the background is also parametrized by a 2D
histogram and it is obtained after performing background studies described
in this section. In this chapter, a brief description of the fitting procedure
used for this amplitude analysis is provided and the efficiency and background
parametrizations are also described.

5.1
Fitting procedure

The data fit is performed using the maximum likelihood estimation
(MLE), a method of statistical inference, which is based on testing hypothesis
or deriving estimates to infer properties of a data set. Let a data set with points
represented by the vector: x : x1, ..., xN and let a probability density function
(PDF): f(x; θ) which depends on a set of parameters θ : θ1, ...θn). This PDF
supposedly describes the distribution of these points. Using this PDF, we can
define a function known as likelihood function, which expression is given in
Eq. 5-1.

L(x;θ) =
N∏
i=1

f(xi;θ) (5-1)
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This likelihood function can be also used to define a quantity called FCN which
is given by the following expression:

FCN = −2logL = −2
N∑
i=1

f(xi;θ); (5-2)

the models with lowest FCN are considered as the models that better describe
our data set. The goal of the MLE is to obtain the set of parameters that
maximizes the likelihood function L which is equivalent to minimizing the
FCN. Minimizing the FCN is easier than maximizing the likelihood since
each term in the FCN is independent of the others. In the fitting procedure,
not only the phenomenological models given to describe the amplitude are
contemplated but also the detection efficiency and the background distribution
across the Dalitz plot. Therefore, the total PDF of our model, f , is given by
the normalized sum of signal and background components:

f(s12, s13;θ) = fsigPsig(s12, s13;θ) + (1− fsig)Pbkg(s12, s13), (5-3)

the fraction fsig is the relative fraction of the signal events remaining in the
data sample after selection (in our case fsig ∼= 0.9 as mentioned in the previous
chapter). Pbkg is obtained as a 2D histogram background studies, described
below. Psig is explicitly given by the equation below:

Psig = |Ms12,s13 |2ε(s12, s13)∫∫
DP |Ms12,s13 |2ε(s12, s13)ds12ds13

. (5-4)

whereM is the amplitude of the decay (given by the phenomelogical models:
Isobar and QMIPWA, described in Chapter 2), additionally a normalization
is included in the PDF and ε(s12, s13) is the efficiency map which provides
a correction for the detection efficiency. The set of parameters to be found
are the magnitudes ai and phases δi of the complex coefficients in the Isobar
model. In the case of the QMIPWA, we also look for the amplitude and phase
of the S-wave in the bins provided.

5.1.1
Fit Fractions

The fit fractions are quantities often used in amplitude analyses and
they can provide a qualitative description for the components of the phase
space of a decay. These fit fractions are independent of the convention used
in different fitting programs like the amplitude formalism, normalization and
phase convention. These fit fractions are useful when comparing the results
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obtained in different analyses. The mathematical expression for the fit fractions
is shown in Eq. 5-5.

FFi =
∫∫
DP |ciAi(s12, s13)|2ds12ds13∫∫

DP |
∑
j cjAj(s12, s13)|2ds12ds13

(5-5)

The fit fractions do not necessarily add to one as it can be appreciated in Eq.
5-5 due to the interference among the different resonances. In this context, we
can also define the interference fit fractions (given in Eq. 5-6) that together
with the fit fractions add up to one:

FFij =
∫∫
DP 2Re|cic∗jAi(s12, s13)A∗j(s12, s13)|ds12ds13∫∫

DP |
∑
j cjAj(s12, s13)|2ds12ds13

(5-6)

In Eq. 5-6, the interference fit fractions are only defined for a pair of resonance
amplitudes Ai and Aj such that Ai 6= Aj and the integration is performed
over the entire phase space of the decay.

5.2
Efficiency map

In order to account for the effects of the detection efficiency, it is necessary
to obtain a parametrization for the detection efficiency across the Dalitz plot
as a function of the invariant masses squared, s12 and s13. This efficiency map
is constructed as a 2D histogram from a simulation (Monte Carlo) sample
generated using the LHCb software as a function of the Dalitz plot coordinates.

The simulation sample is generated using the framework Gauss [38], the
events are generated using Pythia 8 [37] which simulates actual proton-proton
collisions accounting for generation and detection. Heavy hadrons produced
in these collisions are generated using EvtGen [39]. Later, the propagation
of particles and interaction with the detector are simulated using GEANT4
[40]. Since it did not exist a theoretical model for the phase of the decay
D+
s → K−K+K+ (when the simulation was run), the MC sample was

generated without a resonant structure (constant matrix element) so it only
contains information about the kinematical boundaries of the decay and the
detection efficiency.

The first step in the efficiency map construction is the application of
the same selection criteria to the MC as the requirements applied to the
data sample, the same reconstruction, (L0, HLT1, HLT2) trigger, stripping
and MVA selection. Additional to these requirements, the MC is corrected to
account for differences in the distributions of the kinematical variables with
respect to data. This process is performed by a reweighting algorithm.
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5.2.1
Resonant structure weight

Before the reweighting procedure, it is necessary to include the resonant
behavior of the decay in the simulation sample. As mentioned before, the
simulation is generated using a constant matrix element so that the resonant
structure of the D+

s → K−K+K+ decay is not present in the distributions of
the variables in the MC. This resonant structure can be incorporated into the
MC by the use of a resonant structure weight. This weight is constructed from
a 2D histogram of the data sample after correcting for the detection efficiency
and subtracting the background contributions.

This is achieved in the following way: First, the invariant mass distri-
bution of the data sample (after performing all the selection requirements) is
fitted using the Splot technique [15] with the same PDF described in Chapter
4 (signal: Gaussian and two crystal balls, Eq. 4-4 and background: Bernstein
polynomial, Eq. 4-6). Then, a Dalitz plot is constructed using the invariant
masses squared s12 and s13 weighted by the results obtained in the Splot which
should subtract the background contribution (these weights are related to the
probability of an event being signal or background). Then, a Dalitz plot of
the MC is constructed weighted by the PID correction (this DP is supposed
to account for the efficiency). Finally, the ratio between these two histograms
is taken. Given that the sPlot accounts for the background distribution and
the MC accounts for the efficiency, the final histogram should only contain
the resonant structure of the decay. The final histogram is used to obtain the
resonant structure weight (the weight of an event is given by the height at the
position of that event in the final histogram). The histogram of the resonant
structure is shown in Fig. B.1 in Appendix B.

5.2.2
Reweighting

The next step in the construction of the efficiency map is the kinematical
reweighting of the MC events. This process ensures that any remaining
difference between the distributions of the MC and the data sample for
relevant variables are accounted for. The reweighting algorithm consists in
calculating weights using estimators in the same way that the MVA algorithm
is implemented, details on how the algorithm works can be found in [41].
However, the reweighting does not return a value for a decision classifier but a
weight for each event. The reweighting algorithm works with two samples that
are provided to the classifier. The first sample is called the original sample (in
our case the MC) and it is the one that requires the corrections; the second
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sample is called the target which in this case is the data sample. The variables
provided to the reweighting classifier in our case are related to the mother
particle: p, pT , ETA, FD χ2, IP χ2, DIRA, FD, IP and Vertex χ2. Additionally
to this, the data sample includes the signal weights obtained from the sPlot
technique (which accounts for the background distribution in the sample) and
the MC includes the PID and resonant structure corrections in the reweighting.
To obtain the reweigthing correction, we use an algorithm known as folding
reweighter which divides the sample on a given number of sub-samples and
each one is used for the training. Then, the results obtained are applied to
the remaining samples. In the our reweighting process, 3 folds were used.
The distributions of the variables before and after the reweighting are shown
in Appendix B where it can be clearly seen how this process equalized the
distributions.

5.2.3
Efficiency map construction

As mentioned above, the efficiency map in the fitting procedure is
provided as a 2D histogram. The height of a bin in a given position (s12, s13) will
provide a value for the efficiency at that point. The efficiency is constructed by
filling a 2D histogram with MC events weighted by the PID and the reweighting
corrections. In addition to this, the border of the Dalitz plot should also have
corrections since it may be less populated than the rest of the phase space
due to binning effects. To account for this, we divided the MC histogram by
a histogram constructed using a larger sample of events (about 40 million)
generated in GooFit with a constant matrix element. Finally, we use a 2D
cubic spline to produce a smoothed histogram to account for the statistical
fluctuations. The cubic spline is performed using the LauCubicSpline code
from Laura++ [7]. The final efficiency histogram is shown in Fig. 5.1.

5.3
Background parametrization

Similarly to the efficiency, the background is parametrized as a 2D
histogram. In principle, the background histogram could be constructed by
simply plotting a Dalitz plot populated with the events in the background
region of the mass spectrum ({1925<M<1955}∪{1985<M<2025}), this is
possible since the background distribution is linear across the whole spectrum.
However, the φ(1020) present in the background would be distorded due to the
use of DFT invariant masses squared. The DTF makes the φ(1020) peak move
slightly from the expected position so the φ(1020) will be wider than expected
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Figure 5.1: Corrected efficiency map used in the D+
s → K−K+K+ fits.

in the background DP. This is ilustrated in Fig. 5.2 where the invariant mass
squared distributions for two different slices of the background region are
shown. It is clear that the φ(1020) peak is shifted from the expected position.
For this reason, another method has to be used to construct the background
histogram. The method used in this dissertation is known as background
studies.

Since the background contribution is linear across the invariant mass
spectrum, a parametrization for this distribution can be obtained in differ-
ent slices of the background region and then these results can be used to
"interpolate" a parametrization for the background inside the signal region
(1968.8 ≤M ≤ 1978.2) [MeV].

In order to obtain the background parametrization for different slices of
the background region, we performed 1D fits of the sK−K+ distributions in
those slices. The PDFs used for these fits contains three main components:
φ(1020), f0(980) and the non-resonant phase space as shown in the equation
below:

B(s) = NφG(s) +Nf0H(s) +NeffE(s), (5-7)

where G(s) is the φ(1020) PDF, H(s) is the f0(980) PDF, E(s) is the non-
resonant phase space PDF (the explicit mathematical expressions for these
PDFs are shown in Appendix C) and Ni are the number of events for these
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Figure 5.2: Invariant mass squared distributions for two different slices of the
background region. The blue curve represents data in the region 1915 − 1925
MeV in the invariant mass distribution while the blue curve represents the
data in the region 1995− 2010.

components obtained from the fit. These fits are performed using the RooFit
package [23]. The Ni results are used to calculate the relative fractions of the
background parametrization components:

fφ = 2Nφ

2Nφ + 2Nf0 +Neff

, ff0 = 2Nf0

2Nφ + 2Nf0 +Neff

,

feff = Neff

2Nφ + 2Nf0 +Neff

, (5-8)

the factor of 2 comes from the fact that we use both s12 and s13 so there will
be an extra contribution to the resonances’ fractions in the "combinatorial"
(outside the peak) part of the background distribution. An example of these
fits is shown in Fig.5.3 where the background slice used is 1930-1940 [MeV].
In total, we performed fits in six slices of the background region, each of them
was 10 MeV wide.

Later, a mean of the obtained fractions in all the slices is calculated and
these mean values are used to construct the final 2D background histogram as
an incoherent sum of the background parametrization components. The results
obtained for the fits in the different slices of the background region are shown
in Table 5.1.
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Figure 5.3: Parametrization of the sK−K+ corresponding to the background
region slice 1930-1940 [MeV] of the invariant mass distribution. The blue
line represents the combined model with the three components: the green
line represents the non-resonant phase space, the yellow line represents the
parametrization of the f0(980) resonant and the red line represents the
phi(1020) parametrization. This is log plot so that the contributions for each
resonance are visible.

Region fφ ff00

1915-1925 0.219 0.569
1930-1940 0.206 0.584
1945-1955 0.254 0.629
1985-1995 0.242 0.646
2000-2010 0.238 0.595
2015-2025 0.231 0.589

Table 5.1: Values obtained for the fractions of the different components of the
background parametrization in the different slices of the background region

The obtained values for the fractions of the background parametrization
components in the signal region of the mass spectrum are then: fφ = 0.23,
ff0 = 0.60 and feff = 0.17. Finally, we generated simulated samples of three-
body decays using GooFit: two resonant samples of 2.3×105 and 6.0×105 events
with φ(1020) and f0(980) intermediate states respectively and a non-resonant
sample with 1.7 × 105 events. The 2D background histogram is constructed
by plotting together all the samples (this simulates an incoherent sum). The
final histogram sample contains 1M events; after plotting the histogram, we
perform a cubic spline in the same way it was done for the efficiency. The final
background histogram is shown in Fig. 5.4.
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Figure 5.4: Background parametrization used in the D+
s → K−K+K+ fits.
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6
Results of the D+

s → K−K+K+ amplitude analysis

In this chapter, a summary of the results obtained in the Isobar Model
and the QMIPWA fits for the decay channel D+

s → K−K+K+ is presented.
After the background and efficiency corrections, it was necessary to define a
fitting strategy: first we identify qualitatively the resonances that are found in
the phase space of this three-body decay to obtain a baseline model for the
Isobar fits. In Fig. 4.7, the only resonance that can be clearly identified in the
Dalitz plot is the φ(1020) because it appears as a thin line at s12 ≈ 1.1 GeV2

with its characteristic spin-1 angular distribution. Aside from this resonance,
there does not exist a clear contribution from any other spin 1 resonance
(possibly there exists a small contribution from ρ(1450) but the low statistics
in the high mass region do not allow a clear identification of this resonance).
In the case of scalar resonant states, a contribution from f0(980) close to the
threshold of the phase-space together with a S-wave structure may be identified
and maybe another S-wave at higher mass. Therefore, we chose a baseline
model based on these resonances: the φ(1020) is included with fixed coefficient
cφ(1020) to be used as a reference for the other coefficients ci (magnitude and
phase); f0(980) is included because it is observed to be inside the phase-space
of the decay and f0(1370) is also included motivated by the studies performed
for the decay D+ → K−K+K+ in [32] (the mass and width of this resonance
are left as free paramaters in the fits). Later, we performed several fits with
different variations of the baseline model that include many combinations of
the resonances allowed in the decay mode R → K+K−; the parameters used
for these resonances (mass and width) are taken from PDG [29] and they
are summarized in Table 6.1. The total number of events used in the fitting
procedure is 103980.

6.1
Baseline Isobar model

The baseline model is based on the model presented in the amplitude
analysis of the decay D+ → K−K+K+ [32]. In this model the parameters
of the φ(1020) and f0(980) are fixed while the parameters of the f0(1370)
(mass and width, additionally to the coefficient cf0(1370)) are set as floating
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Resonance Spin Lineshape m(MeV/c2) Γ(MeV/c2)
a0(1450) 0 RBW 1474 265
f0(980) 0 Flatté 990 70
f0(1370) 0 RBW 1370 350
f0(1500) 0 RBW 1505 109
φ(1020) 1 RBW 1019.461 4.266
ρ(1450) 1 RBW 1465 400
f2(1270) 2 RBW 1275.1 185.1
f ′2(1525) 2 RBW 1525 73

Table 6.1: List of resonances included in the D+
s → K−K+K+ fit models along

with their properties. RBW stands for Relativistic Breit-Wigner.

Resonance Amplitude Phase (rad) Fit fraction (FF) (%)
φ(1020) 1 [fixed] 0 [fixed] 50.3
f0(980) 2.35± 0.01 0.56± 0.01 58.7
f0(1370) 0.44± 0.02 −0.58± 0.04 4.0∑

FF = 113.0 %
FCN = -122657

mf0(1370) = 1.401± 0.001 GeV/c2

Γf0(1370) = 0.073± 0.002 GeV/c2

Table 6.2: Coefficients and fit fractions of the baseline model using the Isobar
Model. Model used as a first parametrization for the phase space of the decay
D+
s → K−K+K+ motivated by the studies in [32]. Uncertainties are only

statistical

in the fitting algorithm. Both the φ(1020) and f0(1370) are parametrized by
a RBW lineshape and the f0(980) is parametrized by a Flatté distribution.
The results obtained for this model are shown in Table 6.2 and the FCN
obtained is -122657. In this model, the fit cannot be resolved in the sK−K+

distribution at low mass (an extra peak beside the main φ(1020) peak appears)
and in the sK+K+ distribution at high mass as shown in Fig. 6.1 (due to the
high contribution of φ(1020), the region outside the peak cannot be clearly
appreciated qualitatively in the invariant mass squared distributions, therefore
we plot the sK−K+ distribution in log scale). Given these results, it is clear
that other contributions have to be included to resolve the fit in these regions.
Contributions from scalar and spin 2 resonances are considered in the baseline
model variations.

The invariant mass squared distributions for the baseline model are
shown in Fig. 6.1 where it is clear that the model does not satisfactorily
describe the data at high masses.
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Figure 6.1: Invariant mass squared projections for the baseline model. The
graph on the left shows the sK−K+ distribution and the plot on the right shows
the sK+k+ distribution. The model histogram was plotted using a simulation
generated in GooFit with the parameters obtained in the Isobar Model fit.

6.2
Isobar Model variations

We tested many models which included different combinations of the
allowed resonances in the decay channel R→ K−K+ (the allowed resonances
with parameters are shown in Table 6.1). Since there exist no previous work
on the amplitude analysis for this decay channel, we do not have any specific
preference in the number and/or combination of resonances. In all the models,
the resonances were parametrized by a RBW except for the f0(980) which
was parametrized by a Flatté lineshape and all parameters (mass and width)
for all the resonances were set to constant except for models in which the
mass and width of f0(1370) were used as a fitting parameter. No other options
were explored in these fits like using the parameters of the f0(980) lineshape
as fitting parameters; these variations should be tested in future research.
Each model was run at least three times using the fitting algorithm to test the
stability of the fit. When choosing the best models we looked at the lowest FCN
with small values for the sum of the fitting fractions (to avoid big and probably
unphysical interference between the resonances) and values of the mass and
width of the f0(1370) resonance within an acceptable range. In general, many
of the features of the phase-space could not be parametrized satisfactorily by
the tested models, likely due to the limitations of the Isobar Model or the choice
of lineshapes. This can be clearly appreciated in the high-mass region of the
sK+K+ distributions, where the fits cannot resolve the final peak close to the
region sK+K+ ≈ 2.1 GeV2. Also, the values of mf0(1370) and Γf0(1370) lie within
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an acceptable range but not sufficiently close to the measured values by PDG.
Attempts were made to keep the limits of these parameters within the values
given by PDG (1.2 < mf0(1370) < 1.5 [GeV] and 0.2 < Γf0(1370) < 0.5[GeV]
[29]) but the obtained values reached the lower limit in most of the cases.
Therefore, the limits were adjusted to: (1.1 < mf0(1370) < 1.7 [GeV] and
0.05 < Γf0(1370) < 0.7[GeV]. The results for the best three Isobar model fits are
summarized in Table 6.3.

It is important to note that the models with lowest FCN include at least
three contributions to the S-wave (the 2 resonances from the baseline model
and an extra contribution). Model 1 includes, aside from the baseline model
resonances, one scalar contribution a0(1450) and the two spin 2 resonances
allowed in this decay channel. Model 2 has the same resonances as Model 1
with an extra contribution from ρ(1450). Finally, Model 3 includes the scalar
f0(1500) into Model 1. Several variations of these models were tested, however,
they did not meet the requirements of a small value for the sum of the fitting
fractions and a low FCN.

From Table. 6.3, we can extract some common features from the results
of these models. The fraction of φ(1020) sligthly changes in the three models
mantaining a value between 48%-49%. This is also a common feature of all the
tested models, the value of this fraction lies within the range 45%-52% which
means that the decay is dominated by the contribution from the φ(1020) but
it is also dominated by a S-wave structure. In the three models, the fit fraction
of f0(1370) is the largest meaning that it dominates the decay S-wave but also
the a0(1450) resonance may have an important contribution. In general, all
the fitting models have large contributions from S-wave components (mainly
f0(1370) and a0(1450) but sometimes f0(1500)) to the fitting fractions while
the contributions of the spin-2 resonances stay low (about 5%).

Another interesting feature are similarity of the values obtained for
mf0(1370) and Γf0(1370). This may imply a contribution from a scalar with Γ
within the range 0.25-0.29 GeV and low mass. However, the proximity of
mf0(1370) to mf0(980) might reveal a possible effective parametrization of the
S-wave at low invariant mass squared performed by the fitting algorithm. This
means that the fitting algorithm has difficulty to separate the lineshapes at
low mass so it might use the f0(1370) to account for the features that are not
resolved by f0(980).

The invariant squared mass distributions for these three models are
shown in Fig. 6.2. The solutions present small variation among themselves,
therefore no conclusions about the best model out of this three might be
formulated based on these distributions. In the three models, the final peak
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in the sK+K+ cannot be resolved by the fit, which is also a common feature
among all the tested models.

Comments on the results for the Isobar Model

– In all the models tested, the fit fraction of φ(1020) lies within the range
0.42 − 0.51, being ∼ 0.48 the most common result. The values of the
other fit fractions fluctuate in a inconsistent manner depending on the
resonances included. However, the S-wave posseses always the highest
contribution to the fit fractions.

– Models where the sum of fitting fractions was much larger than 200%
were dicarded as solutions because they did not represent a physical
solution, even though many of those had lower FCN values than the
fitting models presented here.

– The models with the lowest FCN have at least 5 resonances, including
the 3 resonances from the baseline.

– The FCN of fitting models with floating mass/width of f0(1370) was
smaller compared to the FCN of the same models where these parameters
were fixed in the fit.

– The region 1.9 < sK+K+ < 2.2 [GeV2] could never be fitted in a
satisfactory way, independently of the resonances included. The final
peak at about sK+K+ ≈ 2.1 [GeV2] could never be resolved by any of the
fitting models.

6.3
QMIPWA model results

As mentioned in previous chapters the description of the S-wave is
not well performed by the Isobar Model because of the difficulty presented
when trying to separate the lineshapes. The QMIPWA was introduced as an
alternative model to resolve the parametrization of the S-wave by modelling it
with two parameters at each bin provided to the fitting algorithm. Several fits
were performed using the QMIPWA where we tested different binning schemes
as uniform and adaptive binning. Some of these binning schemes caused a high
leaking of the φ(1020) resonance, therefore the binning had to be adjusted
manually (adding/removing bins) from a uniform binning scheme in the
mass spectrum until convergence of the S-wave was found with uncertainties
smaller in at least one order of magnitude than their corresponding values and
no-leaking from higher spin resonances was present (basically, we carefully
removed bins with high uncertainty and bins where leaking from φ(1020)
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Model 1
Resonance Amplitude Phase (rad) Fit fraction (FF) (%)
φ(1020) 1 [fixed] 0 [fixed] 48.5
f0(980) 0.92± 0.05 0.83± 0.06 8.6
f0(1370) 2.76± 0.14 1.92± 0.05 58.8
a0(1450) 2.97± 0.07 0.31± 0.03 33.5
f2(1270) 0.57± 0.05 3.11± 0.15 0.3
f ′2(1525) 1.36± 0.16 2.09± 0.11 0.3∑

FF = 150 %
mf0(1370) = 1.097± 0.003 GeV

Γf0(1370) = 0.26± 0.01 GeV
FCN = -125887

Model 2
Resonance Amplitude Phase (rad) Fit fraction (FF) (%)
φ(1020) 1 [fixed] 0 [fixed] 49.8
f0(980) 1.01± 0.05 0.43± 0.08 10.7
f0(1370) 2.61± 0.11 2.13± 0.03 69.5
a0(1450) 2.73± 0.08 0.37± 0.03 29.3
ρ(1450) 1.03± 0.14 −1.28± 0.03 0.7
f2(1270) 0.88± 0.08 3.11± 0.06 0.8
f ′2(1525) 0.93± 0.13 1.30± 0.25 0.1∑

FF = 161 %
mf0(1370) = 1.088± 0.003 GeV

Γf0(1370) = 0.21± 0.01 GeV
FCN = -125911

Model 3
Resonance Amplitude Phase (rad) Fit fraction (FF) (%)
φ(1020) 1 [fixed] 0 [fixed] 48.6
f0(980) 1.02± 0.04 0.65± 0.06 10.7
f0(1370) 2.51± 0.13 2.23± 0.07 53.8
f0(1500) 0.95± 0.17 0.45± 0.13 4.5
a0(1450) 1.98± 0.21 0.75± 0.13 15.0
f2(1270) 0.63± 0.07 2.89± 0.11 0.4
f ′2(1525) 1.38± 0.16 0.22± 0.11 0.3∑

FF = 133 %
mf0(1370) = 1.112± 0.004 GeV
Γf0(1370) = 0.252± 0.009 GeV

FCN = -125903

Table 6.3: Coefficients, fit fractions and parameters of the f0(1370) resonance
obtained for the best three Isobar Model fits. Uncertainties are only statistical
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was found and added more bins in regions of high uncertainty to reduce the
uncertainty of the neighbours; this process had to be done carefully because
in some cases the exclusion of a single bin changed the behavior of the S-wave
or caused the non-convergence of the fitting algorithm).

The fits performed initially included only the φ(1020) and the S-wave
parametrization. The S-wave and the invariant mass squared distributions for
the fitting model with the lowest FCN are shown in Fig. 6.3; the FCN value
for this model is -125320. As shown in Fig. 6.3, the fit cannot resolve the
fit in the region sK+K+ > 1.4 GeV2 and the parametrization of the S-wave
has high uncertainty in the region mK−K+ > 1.24 GeV (in general the fits
using this model presented high uncertainties in this mass region regardless
of the binning schemes used). Although the region mK−K+ > 1.38 GeV was
partially solved by the binning used, the region 1.24 < mK−K+ < 1.38 GeV still
presented high uncertainties and a dicontinuity in the phase. In order to solve
this issue, two methods are implemented: including more high spin resonances
in the fitting model and performing the fit in the region that does not include
the discontinuity in the phase.

In total, there exists 7 possible fitting models in the QMIPWA formalism
that include all combinations of the allowed high spin resonances. Fits using
these models were performed with the same binning scheme for all of them.
The models are shown in Table 6.4 and the S-wave parametrization for each
model is shown in Fig. 6.4. The QMIPWA fitting model that includes the
resonances φ(1020) and f2(1270) did not converge so a parametrization for the
S-wave is not provided.

From Table 6.4 and Fig. 6.4, we can identify different features: firstly,
the FCN of the QMIPWA is smaller than the FCN values obtained using
the Isobar Model by 100 units approximately. Also, looking at the S-wave
amplitude and phase distributions, it can be appreciated that all models
present a discontinuity in the phase distribution at about mK−K+ ≈ 1.24 GeV.
In the models where the ρ(1450) resonance is included, this discontinuity is
more explicit; additionally to this, a new peak appears at aboutmK−K+ ≈ 1.24
GeV in these fits. Also the models c and f with only spin 2 resonances aside from
φ(1020) have a similar distribution as the baseline model with only φ(1020).
This is expected from the Isobar Model fits because the spin 2 reonances have
a minimal contribution to the phase-space of the decay.

Unfortunately, the first strategy did not provide a resolution to the
discontinuity in the phase distribution of the S-wave. Therefore, a plot of
a subregion of the mass spectrum is performed with model "g" (this model
was chosen because it has the lowest FCN value). The first attempt to fit
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Model φ(1020) ρ(1450) f2(1270) f ′2(1525) FCN ∑
FF

a 3 3 -126082 181
b 3 3 no convergence -
c 3 3 -125620 89
d 3 3 3 -126063 202
e 3 3 3 -126216 213
f 3 3 3 -125642 94
g 3 3 3 3 -126292 223

Table 6.4: Models tested using the QMIPWA formalism.

the data until mK−K+ ≈ 1.24 GeV was not succesfully completed because
of the non-convergence of the fitting algorithm so the range was increased
to mK−K+ ≈ 1.34 GeV. The fit was run with different binning schemes and
two solutions in particular presented different modeling of the S-wave, these
distributions are shown in Fig. 6.5. The fact that two different solutions are
found with two different binning schemes demonstrates the limitations of the
QMIPWA to parametrize the S-wave and a possible inability to represent the
S-wave using the QMIPWA.
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a.

b.

c.

Figure 6.2: Invariant mass squared distributions for the Isobar model fits 1, 2
and 3 (a, b and c respectively). On the left, the sK−K+ projection is shown
and the sK+K+ projection is shown on the right. The red line represents the
fitting model while the black points represent the data. The model histogram
was plotted using a sample generated in GooFit with 1M events.
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Figure 6.3: Invariant mass squared distributions and S-wave parametrization
obtained in the QMIPWA fit with only φ(1020) as a high spin resonance. The
left-hand side of the bottom figure shows the amplitude ai of the parametrized
S-wave and the phase φi of the S-wave is shown on the right hand side of the
bottom figure. The interpolation is performed by a cubic spline. Number of
bins provided to model the S-wave was 76. The sK−K+ distribution is shown in
the top figure left and the sK+K+ distribution is shown in the top figure right.
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a. c.

d. e.

f. g.

Figure 6.4: Amplitudes and phases of the S-wave parametrizations for the
allowed fitting QMIPWA models. The fitting algorithm converged only for 6
models given in Table 6.4. The amplitude distributions are shown on the left-
hand side of the figures and the phases on the right hand-side. The number of
bins used to fit the S-wave was 65. The invariant squared mass distributions
are shown in Fig. D.1 in Appendix D.

1. 2.

Figure 6.5: Amplitudes and phases of the S-wave parametrizations for model
"g" with two different binning schemes. 1. is fitted with 78 bins while 2. is fitted
using 64 bins. The removed bins correspond to the high uncertainty region in
the phase distribution. The amplitude distributions are shown on the left-hand
side of the figures and the phases on the right hand-side.
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7
Conclusion

In this dissertation, we have performed an amplitude analysis of the
decay Ds → K−K+K+ using the Run 2 data from the LHCb experiment.
The final data set after selection included 103980 events. The data selection
after trigger was mostly performed by Carolina Bolognani in [27], only the
final BDT requirement was increased so a 90% purity was achieved in the
sample. A parametrization of the detection efficiency was performed including
a study of the data/MC differences and also a background parametrization
was performed. Two phenomenological models were employed in the fitting
procedure: the Isobar Model and the QMIPWA. Initially, we chose a baseline
for the Isobar Model fit where three resonances appear in the phase-space:
φ(1020), f0(980) and f0(1370) where the parameters (mass and width) of the
f0(1370) were set as floating in the fitting algorithm. This fitting model is
motivated by the work done in [32].

The baseline model shows the need of a different parametrization since
the fit cannot resolve several features of the data distribution especially in
the high sK+K+ region, this is clearly appreciated in Fig. 6.1 where the fit is
not resolved by any of the models in this region. Several fits were performed
with different combinations of the allowed resonant states in the decay mode
R → K−K+; all of them including the baseline chosen for the Isobar Model
fits. Then, we chose the three fitting models with the smallest value of FCN
where the sum of the fit fractions lies below 200%, because high values for
the sum do not represent physically allowed parametrizations. The results for
the three best fits are shown in Table 6.2 where the highest contribution to
the fit fractions comes from f0(1370) and φ(1020). This is expected as seen in
Fig. 4.7 where a thin line coming from φ(1020) and a S-wave distribution are
clearly present in the phase-space. These results show a qualitative description
of the phase-space of the decay D+

s → K−K+K+ but they should be carefully
analyzed in future research since an acceptable fit with reliable results could
not be found; especially because the best models could not resolve the fit in the
region sK+K+ > 1.8 GeV2 (and in general any of the proposed models could
resolve the fit in this region) likely due to the lack of resonant interference in
that region: the Isobar Model uses a reference to measure the relative phase of
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the resonances and without any high-spin resonance in the high mass region,
the algorithm cannot find a good parametrization.

Despite of the fact that a satisfactory fit was not obtained, some features
of the phase-space can be extracted from these results. First, given that
the phase space is dominated by the φ(1020) resonance and the S-wave,
contributions from spin 2 resonances are small. This is reflected in the values
for the fit fractions of the f2(1270) and the f2(1525) which always lie in the
range 0.2-0.8%. This is physically expected because the f2(1270) resonance
decays primarily in the π−π+ decay mode and also the peak of f2(1525) is
outside the phase space of the decay of the decay D+

s → K−K+K+ so a small
contribution of these resonances should be present in Dalitz plot. Also, it is
important to note that the inclusion of more resonances reduces the value of
the FCN in the fits (as expected, because the FCN value decreases with the
number of parameters given to the fitting algorithm) but not many of these
solutions represent physically allowed states given that the sum of the fitting
fractions is extremely large.

Another feature that can be extracted from these results is the apparent
complexity of the S-wave. The results presented with the lowest FCN values
include at least 3 scalar resonant states and in general the fits that better
modelled the invariant masses squared distributions include at least 5 resonant
states. Apparently, the structure of the S-wave cannot be modelled by the
lineshapes used or the choice of parameters, therefore, further studies with
different settings should be attempted (change lineshapes, mass, widths of the
scalar resonances). It is also possible that the Isobar Model itself might not
able to parametrized the S-wave in this decay mode so other phenomenological
models should be implemented.

In the three best Isobar fitting models, the values for Γf0(1370) are
compatible suggesting that this value should be the accurate width value
of this resonant state. However, this fact should be carefully analyzed given
that the masses lie within a similar range among themselves but they are not
compatible.

Also, the fit fraction values of the φ(1020) for all the models tested
lie within the range 40%-53%, results that are expected to be found in
further studies. In the case of the scalar resonances, these values fluctuated
inconsistently depending on the resonances included in the fitting models.
This demonstrates the complexity of the S-wave and the inability of the Isobar
Model to decribe this S-wave.

In the QMIPWA fitting results, we can appreciate that the S-wave in fact
posseses a complicated structure that could not be resolved by this formalism.
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The fitting models do not model the invariant mass squared distributions
satisfactorily. Apparently the QMIPWA is not well suited to describe this
decay channel likely due to the absence of other high spin resonant states in
the high mass region to be used as a reference. Another interesting feature is
the discontinuity of the S-wave phase distribution at about φ = 1.26 rad that
becomes more prominent when ρ(1450) is included in the fit. This discontinuity
may arise from the lack of interference in the region mK+K− > 1.24 GeV so
that the fitting algorithm will not provide a physical solution, however this
result should be further analyzed. Another possible explanation is that the
fitting algorithm produces an artificial interference between the ρ(1450) and
the S-wave to account for the lack of data points in the high mass region. The
inability of the QMIWA to model the data becomes more clear when comparing
the Isobar Model 1 and the QMIPWA Model f; they are compatible models
and it is expected to find a lower FCN value for model f of because it has more
parameters, which is not the case.

In Fig. 7.1, the S-wave parametrizations for three best fitting models
using the Isobar Model are shown. The S-wave differs significantly among all
of these models so the results do not provide a conclusion about the structure of
the S-wave in the phase-space of the D+

s → K−K+K+ decay. In addition, the
fits performed in sub-regions of the phase space demonstrate more clearly the
strange behavior of the S-wave phase distribution: the fact that two different
solutions are obtained using only different binning schemes with the same
fitting model might reflect the impossibility of using the QMIPWA to describe
the decay channel D+

s → K−K+K+.

Figure 7.1: Amplitude and phase of the S-wave parametrization obtained for
each one of the best Isobar Model fits. On the left hand side of the figure, the
amplitude of the S-wave is shown. The phase is shown on the right-hand side.

Since the QMIPWA is a quasi-model independent, the results obtained

DBD
PUC-Rio - Certificação Digital Nº 2112885/CA



Chapter 7. Conclusion 74

for the coefficients are not expected to vary by a significant amount (this
because the high-spin resonances used are supposed to be well accounted by
the Isobar Model). However, when comparing the S-wave obtained for the
best results of the fitting using the Isobar Model (shown in Fig. 7.1) and the
S-wave obtained by the QMIPWA (shown in Fig. 6.3), a great variation is
clearly noted. Both phenomenological models may have found two different
mathematical possible solutions, which might not have a physical meaning.
Therefore, we are not able to provide a conclusion for the D+

s → K−K+K+

decay parametrization.
This is the first time that an amplitude analysis of the D+

s → K−K+K+

decay is performed with a sample of about 100 k events. The main qualitative
features of the resonant structure were obtained, however, a full quantitative
description was not achieved due to the limitations of the phenomenological
models. Further phenomelogical approaches are needed as well as larger data
samples (to be collected in the LHCb Run 3) to attempt to obtain an acceptable
quantitative description of this decay channel.
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A
Resonant states in the R→ K−K+ two-body decay channel

There are 8 allowed resonant states in the decay channel R → K−K+.
the Dalitz plots of this resonant states are shown in Fig. A.1.

a. b.

c. d.

e. f.

DBD
PUC-Rio - Certificação Digital Nº 2112885/CA



Appendix A. Resonant states in the R→ K−K+ two-body decay channel 80

g. h.

Figure A.1: Dalitz plot of the allowed resonant states in the decay channel
D+
s → K−K+: a. φ(1020), b. f0(980), c.f0(1370), d. f0(1500), e. a0(1450), f.

ρ(1450), g. f2(1270) and h. f ′2(1525)
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B
Resonant structure weight and reweighting

The reweighting process accounts for the differences of the data sample
and the Monte Carlo simulation variables. These differences come from the
fact that the MC is generated without a resonant structure. The resonant
structure is implemented in the MC as a weight which is obtained from as
a 2D-histogram containing only the dynamical structure of the phase space
of the D+

s → K−K+K+ decay channel. The 2D-histogram for the dynamical
weight is shown in the figure below.

Figure B.1: Resonant struture weight histogram. It contains the resonant
structure of the decay excluding the background contribution and the effects
of the detection efficiency.

This resonant structure weight also provides insight about the resonant
contributions in the this decay channel. The resonant structure is clearly
dominated by the φ(1020) and lacks of contributions in the high mass region.

After the resonant structure correction, the reweighting algorithm is used
to account for the remaining differences between the distributions of the data
and the MC. The distribution of variables used in the reweighting before and
after the procedure are shown in the figures below.
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Figure B.2: Distribution of variables used in the reweighting process before the
reweigthing. All histograms are normalized.

Figure B.3: Distribution of variables used in the reweighting process after the
reweigthing. All histograms are normalized.
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C
PDFs for the background parametrization components

The components used in the background parametrization are the reso-
nant states that are visible in the background region of the invariant mass
spectrum: φ(1020), f0(980) and the non-resonant phase space distribution. All
of them include the detector efficiency effects. For this reason, a fit of the 1D
efficiency has to be obtianed. This is achieved by performing a fit of the sK−K+

distribution of the Monte Carlo. A suitable model found for the fit is given by
the equation shown below:

E(s) = fchebC(s) + (1− fcheb) [fpsP(s) + (1− fps)G] (C-1)

where fcheb and fps are the fractions of events related to the Chebychev distri-
bution and to the phase-space distribution respectively, C(s) is a normalized
fourth degree Chebychev polynomial of the first kind [28], P(s) is the nor-
malized non-resonant three-body decay phase space distribution given by the
expression:

P(s) ∝ λ1/2(s,m2
K ,m

2
K)λ1/2(m2

Ds , s,m
2
K)

s
(C-2)

and G(s) is the Gamma distribution given by:

G(s) = (s− µ)γ−1exp(−(s− µ)/β)
Γ(γ)βγ . (C-3)

The parameters obtained in the best fit with this parametrization are shown
in Table C.1, similarly a plot for the best fit is shown in Fig. C.1
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Figure C.1: Parametrization of the sK−K+ distribution of the Monte Carlo
phase space. The blue line represents the combined model with the three
components: the green line represents the three-body decay phase space, the
purple line represents the gamma function with parameters given in Table C.1
and the red line represents the Chebychev polynomial PDF.

Parameters Value
a0 -0.14509 ± 0.00003
a1 -0.64758 ± 0.00502
a2 -0.11413 ± 0.00003
a3 -0.38182 ± 0.00004
a4 0.20928 ± 0.00004
γ 1.026 ± 0.347
µ 0.98 ± 0.01
β 0.054 ± 0.001
fcheb 0.538 ± 0.004
fps 0.602 ± 0.003

Table C.1: Parameters obtained for the sK−K+ fit of the Monte Carlo. The
parameters ai are the coefficients of the Chebyshev polynomial; γ, µ and β

are the parameters of the Gamma function. fi are the relative fractions of the
components of the total PDF. Uncertainties are statistical only.

The PDF’s used to represent the φ(1020) and f0(980) are based on the
lineshapes used to parametrize these resonances in the Isobar Model (in the
case of the φ(1020) a RBW and for the f0(980) a Flatté distribution):

F (s) = fN1D(s)P(s)E(s) + (1− f)N2

(∫ smax

smin
D(s′)ds′

)
× E(s) (C-4)
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where N1 and N2 are normalization constants and D(s) is the squared of the
respective lineshape. The final model used for the background parametrization
is given by the following expression:

B(s) = NφG(s) +Nf0H(s) +NeffE(s), (C-5)

where Ni are the yields for each component of the background parametrization
(this fit is performed using the roofit extended package which returns the
estimated number of events instead of the fractions for each component of
the model), E(s) is the parametrization of the efficiency given in Eq. C-1 and
G(s), H(s) are the distributions that represent the resonant phase space with
φ(1020) and f0(980) respectively, shown in Eq.C-4.
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D
QMIPWA invariant mass distributions

The invariant mass squared distributions obtained in the models a to g
are presented in the figure below:

a.

c.

d.
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e.

f.

g.

Figure D.1: Invariant mass squared distributions for Isobar model fits a, c,
d, e, f and g. On the left, the sK−K+ projection is shown and the the sK+k+

projection is shown on the right. The red line represents the solution of the fit
while the black points represent the data. The model histogram was plotted
using a sample generated in GooFit with 1M events.
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